ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2020-11-04
    Description: Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the effect of cultivation period and nitrogen concentration on the growth rate and lipid content of Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES medium supplemented with 1.5 g L−1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared to the untreated control in media amended with 0.25, 0.5, and 1.0 g L−1 NaNO3. Cultures were inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker, and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy to determine the best culture conditions for lipid production. Our results demonstrated that a reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation periods; however, the accumulation of total lipid content was significantly influenced by nitrogen concentration. A maximum lipid production (40%) with no reduction in growth was observed in 10-day old cultures in a BG11/HEPES medium supplemented with 1.0 g L−1 NaNO3. Fatty acid methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments. Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation in culture media increases lipid production without affecting growth.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-28
    Description: Heat stress is a major environmental factor limiting crop productivity, thus presenting a food security challenge. Various approaches are taken in an effort to develop crop species with enhanced tolerance to heat stress conditions. Since epigenetic mechanisms were shown to play a regulatory role in mediating plants’ responses to their environment, we investigated the role of DNA methylation in response to heat stress in tomato (Solanum lycopersicum), an important vegetable crop. To meet this aim, we tested a DNA methylation-deficient tomato mutant, Slddm1b. In this short communication paper, we report phenotypic and transcriptomic preliminary findings, implying that the tomato ddm1b mutant is significantly less sensitive to heat stress compared with the background tomato line, M82. Under conditions of heat stress, this mutant line presented higher fruit set and seed set rates, as well as a higher survival rate at the seedling stage. On the transcriptional level, we observed differences in the expression of heat stress-related genes, suggesting an altered response of the ddm1b mutant to this stress. Following these preliminary results, further research would shed light on the specific genes that may contribute to the observed thermotolerance of ddm1b and their possibly altered DNA methylation status.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...