ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2019-08-15
    Description: Beige adipose tissue has been considered to have potential applications in combating obesity and its related metabolic diseases. However, the mechanisms of acute cold-stimulated beige formation still remain largely unknown. Here, transcriptional analysis of acute cold-stimulated (4 °C for 4 h) subcutaneous white adipose tissue (sWAT) was conducted to determine the molecular signatures that might be involved in beige formation. Histological analysis confirmed the appearance of beige adipocytes in acute cold-treated sWAT. The RNA-sequencing data revealed that 714 genes were differentially expressed (p-value 〈 0.05 and fold change 〉 2), in which 221 genes were upregulated and 493 genes were downregulated. Gene Ontology (GO) analyses showed that the upregulated genes were enriched in the GO terms related to lipid metabolic process, fatty acid metabolic process, lipid oxidation, fatty acid oxidation, etc. In contrast, downregulated genes were assigned the GO terms of regulation of immune response, regulation of response to stimulus, defense response, etc. The expressions of some browning candidate genes were validated in cold-treated sWAT and 3T3-L1 cell browning differentiation. In summary, our results illustrated the transcriptional response of sWAT to acute cold exposure and identified the genes, including Acad11, Cyp2e1, Plin5, and Pdk2, involved in beige adipocyte formation in mice.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-29
    Description: A balanced voltage distribution for each break is required for normal operation of a multi-break vacuum circuit breaker (VCB) This paper presented a novel 363 kV/5000 A/63 kA sextuple-break VCB with a series-parallel structure. To determine the static voltage distribution of each break, a 3D finite element method (FEM) model was established to calculate the voltage distribution and the electric field of each break at the fully open state. Our results showed that the applied voltage was unevenly distributed at each break, and that the first break shared the most voltage, about 86.3%. The maximum electric field of the first break was 18.9 kV/mm, which contributed to the reduction of the breaking capacity. The distributed and stray capacitance parameters of the proposed structure were calculated based on the FEM model. According to the distributed capacitance parameters, the equivalent circuit simulation model of the static voltage distribution of this 363 kV VCB was established in PSCAD. Subsequently, the influence of the grading capacitor on the voltage distribution of each break was investigated, and the best value of the grading capacitors for the 363 kV sextuple-break VCB was confirmed to be 10 nF. Finally, the breaking tests of a single-phase unit was conducted both in a minor loop and a major loop. The 363 kV VCB prototype broke both the 63 kA and the 80 kA short circuit currents successfully, which confirmed the validity of the voltage sharing design.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...