ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2020-07-05
    Description: Precipitation estimates from numerical weather prediction (NWP) models are uncertain. The uncertainties can be reduced by integrating precipitation observations into NWP models. This study assimilates Version 04 Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) (IMERG) Final Run into the Weather Research and Forecasting (WRF) model data assimilation (WRFDA) system using a four-dimensional variational (4D-Var) method. Three synoptic-scale convective precipitation events over the central United States during 2015–2017 are used as case studies. To investigate the effect of logarithmically transformed IMERG precipitation in the WRFDA system, this study reports on several experiments with six-hour and hourly assimilation windows, regular (nontransformed) and logarithmically transformed observations, and a constant observation error in regular and logarithmic spaces. Results show that hourly assimilation windows improve precipitation simulations significantly compared to six-hour windows. Logarithmically transformed precipitation does not improve precipitation estimations relative to nontransformed precipitation. However, better predictions of heavy precipitation can be achieved with a constant error in the logarithmic space (corresponding to a linearly increasing error in the regular space), which modifies the threshold of rejecting observations, and thus utilizes more observations. This study provides a cost function with logarithmically transformed observations for the 4D-Var method in the WRFDA system for future investigations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-28
    Description: Inkjet printing technology is widely used in the manufacture of conformal structures, such as load-bearing antennas or frequency-selective surface radomes. It is particularly promising for preparing conductive patterns on non-developable surfaces. Existing printing technologies employ a single nozzle and a five-axis linkage technique for printing, which is time-consuming. In this study, a conformal plane printing technology based on the arrayed nozzle was developed to prepare conductive patterns on a non-developable surface. The technique actualizes fast printing of passive circuits on a conformal surface, such as a microstrip antenna. Compared to printing techniques employing a single nozzle, the proposed method greatly improves the printing efficiency on conformal surfaces. Specifically, we first developed a model for the driver waveforms and the printing injection parameters via simulation. Subsequently, the accuracy of the computational fluid dynamic simulation results was validated by comparing them with the experimental measurements of droplet trajectory captured using a camera. Next, a droplet spreading model was established, considering energy conservation principles. Finally, a conformal surface printing technology using arrayed nozzles was developed based on the injection parameter and droplet spreading models. The effectiveness and feasibility of the proposed printing method were further validated via simulation and experimental tests of return loss.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...