ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
  • Molecular Diversity Preservation International  (2)
  • Wiley  (1)
Years
  • 1
    Publication Date: 2019-06-20
    Description: Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a hydroponic study was carried out to investigate these effects on two winter wheat cultivars (‘97003’ and ‘97014’) as Mo-efficient and Mo-inefficient, respectively, under different N sources (NO3−, NH4NO3, and NH4+). The results revealed that the activities of nitrate reductase (NR) and nitrite reductase (NiR) followed the order of NH4NO3 〉 NO3− 〉 NH4+ sources, while glutamine synthetase (GS) and glutamate synthase (GOGAT) followed the order of NH4+ 〉 NH4NO3 〉 NO3− in both the wheat cultivars. However, Mo-induced effects in the activities and expressions of N metabolism enzymes under different N sources followed the order of NH4NO3 〉 NO3− 〉 NH4+ sources, indicating that Mo has more complementary effects towards nitrate nutrition than the sole ammonium source in winter wheat. Interestingly, under −Mo-deprived conditions, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application increased the proteins, amino acids, ammonium, and nitrite contents while concomitantly decreasing the nitrate contents in the same order of NH4NO3 〉 NO3− 〉 NH4+ sources that coincides with the Mo-induced N enzymes activities and expressions. The findings of the present study indicated that Mo plays a key role in regulating the N metabolism enzymes and assimilatory products under all the three N sources; however, the extent of complementation exists in the order of NH4NO3 〉 NO3− 〉 NH4+ sources in winter wheat. In addition, it was revealed that mineral elements profiles were mainly affected by different N sources, while Mo application generally had no significant effects on the mineral elements contents in the winter wheat leaves under different N sources.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-03
    Description: Very limited information is available about heavy metal-polycyclic aromatic hydrocarbons (PAHs) depollution involving the modified natural material in soil. Using phenanthrene and cadmium (Cd) as model, this study investigated the effect(s) of modified rice straw by a NaOH solution and on PAHs, heavy metal availability, and their interactions. Treatment included chemical contaminant with/without modified/unmodified rice straw. Fourier Transform Infrared (FTIR) analysis revealed that certain functional groups including anionic matters groups, which can a complex with Cd2+, were exposed on the modified rice straw surfaces. Therefore, Cd concentration was significantly reduced by about 60%, 57%, 62.5 %, and, 64% in the root, shoot, CaCl2, diethylenetriaminepentaacetic acid (DTPA), and extractable Cd, respectively. Subsequently, the prediction of the functional profile of the soil metagenome using Clusters Orthologous Groups (COGs) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the significantly changed individual COGs belonged to the carbohydrate metabolism, ion transports, and signaling (including cytochrome P450s) categories. This indicated that ion transports might be involved in Cd management, while carbohydrate metabolism, including bisphenol, benzoate, ethylbenzene degradation, and cytochrome P450s, were rather involved in phenanthrene metabolism. The exposed functional group might serve as an external substrate, and P450s might serve as a catalyst to activate and initiate phenanthrene metabolism process. These finding offer confirmation that modified straw could promote the reduction of heavy metal and the degradation of PAHs in soil.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...