ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-11
    Description: Mapping plant species at the regional scale to provide information for ecologists and forest managers is a challenge for the remote sensing community. Here, we use a deep learning algorithm called U-net and very high-resolution multispectral images (0.5 m) from GeoEye satellite to identify, segment and map canopy palms over ∼3000 km 2 of Amazonian forest. The map was used to analyse the spatial distribution of canopy palm trees and its relation to human disturbance and edaphic conditions. The overall accuracy of the map was 95.5% and the F1-score was 0.7. Canopy palm trees covered 6.4% of the forest canopy and were distributed in more than two million patches that can represent one or more individuals. The density of canopy palms is affected by human disturbance. The post-disturbance density in secondary forests seems to be related to the type of disturbance, being higher in abandoned pasture areas and lower in forests that have been cut once and abandoned. Additionally, analysis of palm trees’ distribution shows that their abundance is controlled naturally by local soil water content, avoiding both flooded and waterlogged areas near rivers and dry areas on the top of the hills. They show two preferential habitats, in the low elevation above the large rivers, and in the slope directly below the hill tops. Overall, their distribution over the region indicates a relatively pristine landscape, albeit within a forest that is critically endangered because of its location between two deforestation fronts and because of illegal cutting. New tree species distribution data, such as the map of all adult canopy palms produced in this work, are urgently needed to support Amazon species inventory and to understand their distribution and diversity.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-04
    Description: Logging, including selective and illegal activities, is widespread, affecting the carbon cycle and the biodiversity of tropical forests. However, automated approaches using very high resolution (VHR) satellite data (≤ 1 m spatial resolution) to accurately track these small-scale human disturbances over large and remote areas are not readily available. The main constraint for performing this type of analysis is the lack of spatially accurate tree-scale validation data. In this study, we assessed the potential of VHR satellite imagery to detect canopy tree loss related to selective logging in closed-canopy tropical forests. To do this, we compared the tree loss detection capability of WorldView-2 and GeoEye-1 satellites with airborne LiDAR, which acquired pre- and post-logging data at the Jamari National Forest in the Brazilian Amazon. We found that logging drove changes in canopy height ranging from −5.6 to −42.2 m, with a mean reduction of −23.5 m. A simple LiDAR height difference threshold of −10 m was enough to map 97% of the logged trees. Compared to LiDAR, tree losses can be detected using VHR satellite imagery and a random forest (RF) model with an average precision of 64%, while mapping 60% of the total tree loss. Tree losses associated with large gap openings or tall trees were more successfully detected. In general, the most important remote sensing metrics for the RF model were standard deviation statistics, especially those extracted from the reflectance of the visible bands (R, G, B), and the shadow fraction. While most small canopy gaps closed within ~2 years, larger gaps could still be observed over a longer time. Nevertheless, the use of annual imagery is advised to reach acceptable detectability. Our study shows that VHR satellite imagery has the potential for monitoring the logging in tropical forests and detecting hotspots of natural disturbance with a low cost at the regional scale.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...