ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (1)
  • World Scientific Publishing Company  (1)
  • 1
    Publication Date: 2021-08-11
    Description: Observational studies suggest that part of the North Atlantic Oscillation (NAO) variability may be attributed to the spectral ultra-violet (UV) irradiance variations associated to the 11-year solar cycle. The observed maximum surface pressure response in the North Atlantic occurs 2–4 years after solar maximum, and some model studies have identified that atmosphere–ocean feedbacks explain the multi-year lag. Alternatively, medium-to-high energy electron (MEE) precipitation, which peaks in the declining phase of the solar cycle, has been suggested as a potential cause of this lag. We use a coupled (ocean–atmosphere) climate prediction model and a state-of-the-art MEE forcing to explore the respective roles of irradiance and MEE precipitation on the NAO variability. Three decadal ensemble experiments were conducted over solar cycle 23 in an idealized setting. We found a weak ensemble-mean positive NAO response to the irradiance. The simulated signal-to-noise ratio remained very small, indicating the predominance of internal NAO variability. The lack of multi-annual lag in the NAO response was likely due to lagged solar signals imprinted in temperatures below the oceanic mixed-layer re-emerging equatorward of the oceanic frontal zones, which anchor ocean–atmosphere feedbacks. While there is a clear, yet weak, signature from UV irradiance in the atmosphere and upper ocean over the North Atlantic, enhanced MEE precipitation on the other hand does not lead to any systematic changes in the stratospheric circulation, despite its marked chemical signatures.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    World Scientific Publishing Company
    In:  In: Climate Change: Multidecadal and Beyond. , ed. by Chang, C. P., Ghil, M., Latif, M. and Wallace, M. World Scientific Series on Asia-Pacific Weather and Climate, 6 . World Scientific Publishing Company, Singapure, pp. 141-157. ISBN 978-9814579926
    Publication Date: 2015-12-11
    Description: The North Atlantic Ocean undergoes pronounced basin-wide, multi-decadal variations. The corresponding fluctuations in sea surface temperature (SST) have become known as the Atlantic Multidecadal Oscillation (AMO) or Atlantic multidecadal variability (AMV). AMV is receiving increasing attention for three key reasons: (1) it has been linked to climate impacts of major socio-economic importance, such as Sahel rainfall; (2) it may temporarily mask anthropogenic global warming not only in the North Atlantic Sector, but over the Northern Hemisphere (NH); and (3) it appears to be predictable on decadal timescales. This chapter provides an overview of current understanding of AMV, summarizing proposed mechanisms, our ability to simulate and predict it, as well as challenges for future research.
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...