ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-10-01
    Description: Ferrihydrite and goethite are amongst the most important substrates for the sorption of contaminants in soil and other environmental media. Isotopic studies of the transition elements, particularly those that exhibit more than one oxidation state and show pH- and/or redox-sensitive behaviour at low temperatures, have been shown to be potentially useful present-day and past proxies for redox (or palaeoredox) conditions. We have made preliminary investigations of Fe isotope fractionation that take place during the formation of FeIII (oxy)hydroxides (FeIIIox) from an aqueous FeIII(NO3)3 solution (FeIIIaq) under laboratory conditions. We have attempted to keep the chemical system simple by excluding 'vital effects' and major changes in redox through the maintenance of abiotic conditions and use of FeIIIaq. Isotopic measurements (56Fe/54Fe, 57Fe/54Fe) of the FeIII(NO3)3 stock solution, the original ferrihydrite and the mixed ferrihydrite/goethite-supernatant FeIIIaq 'pairs' were carried out using a double focusing multicollector inductively coupled plasma mass spectrometer. The results reveal an apparent systematic variation indicating larger ΔFeIIIaq—FeIIIox with decrease in the ferrihydrite:goethite ratio, which reflects the time allowed for isotopic exchange. These values range from virtually zero (0.03%) after 24 h to 0.30% after 70 h. In each FeIIIox-FeIIIaq 'pair' the lighter Fe isotope is partitioned into the FeIIIox, leaving the FeIIIaq isotopically heavier. The observed fractionation reflects isotopic exchange of Fe between the FeIIIox and FeIIIaq upon at least a two step transition of ferrihydrite to goethite.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-12-01
    Description: Despite the high-grade diagenesis experienced by the Skoorsteenberg Formation mudstones, Tanqua Karoo basin, South Africa, geochemical data have been interpreted to reveal primary mineralogy and so help understand provenance evolution. The geochemical signatures show systematic variations related to stratigraphy. The main changes in mudstones from the lower to the upper part of the section include: (1) an increase in the feldspar content of the primary sediment and a decrease in the content of Al-rich clay (probably dioctahedral smectite); (2) a decrease in the degree of chemical weathering of the sediment, representing a change to a dryer and/or cooler climate; (3) an increase in TiO2/Al2O3 representing increasing mafic sources; (4) an increase in CaO/(K2O+CaO) also possibly representing increasing mafic sources. Mass flux and differential diagenesis are unlikely to be responsible for the depth-related changes since the rocks have undergone the same degree of high-grade diagenesis and the mudstones are interrupted by other lithologies, so disturbing any sort of diffusion gradient. These variations could plausibly be the result of one or more of differential weathering, evolving provenance characteristics or variable hydrodynamic fractionation of the sediment. The ratio of Zr/Y, a possible indicator of hydrodynamic fractionation, increases only slightly and irregularly up-section. There is no relationship between the silica content, representative of the quartz-silt content of the sediment, and TiO2/Al2O3 showing that the amount of quartz, and so the degree of hydrodynamic fractionation, has not controlled mudstone geochemistry. The stratigraphic increase in feldspar content, the decrease in Al-rich clay content and increase of both TiO2/Al2O3 and CaO/(K2O+CaO) must be due to a combination of marginally evolving provenance characteristics (more mafic and felsic rocks exposed to weathering with time) and changes in the degree of rock weathering (less chemical weathering with time).
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...