ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mineralogical Society of America  (1)
  • National Academy of Sciences  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-10-22
    Description: Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-01
    Description: Pyromorphite-group minerals (PyGM), mainly pyromorphite [Pb5(PO4)3Cl], mimetite [Pb5(AsO4)3Cl], and vanadinite [Pb5(VO4)3Cl], are common phases that form by supergene weathering of galena. Their formation is strongly influenced by processes at the Earth's surface and in the soil overlying a lead deposit, and they incorporate high amounts of halogens, mostly Cl and, in some cases, F. The abundance of Br and I in natural PyGM and their potential as process tracers during surface and sub-surface fluid-rock interaction processes has not been investigated in detail due to analytical difficulties. We, therefore, developed methods for the simultaneous determination of Cl, F, Br, and I in PyGM for (1) powdered bulk samples via combustion ion chromatography (CIC) and (2) compositionally zoned crystals by means of secondary ion mass spectrometry (SIMS). Our study is based on well-characterized samples of pyromorphite (N = 38), mimetite (N = 16), and vanadinite (N = 2) from Schwarzwald (Germany). Natural pyromorphite incorporates more I (up to 26 μg/g) than mimetite (up to 2 μg/g) and vanadinite (up to 1 μg/g), while Br contents are higher in mimetite (up to 20 μg/g) and vanadinite (up to 13 μg/g) compared to pyromorphite (less than 4 μg/g). These results are unexpected, as mimetite and vanadinite have longer As/V-O bonds giving them larger unit cells and larger polyhedral volumes for the Cl site in the Pb26 octahedron than pyromorphite. Accordingly, pyromorphite was expected to preferentially incorporate Br rather than I, but the opposite is observed. Hence, halogen chemistry of PyGM is probably not governed by a crystal-chemical control (alone) but by fluid composition. However, the exact reasons remain enigmatic. This idea is corroborated by spatially resolved SIMS analyses that show that many pyromorphite-group minerals are strongly zoned with respect to their halogen mass ratios (e.g., Br/Cl, Br/I mass ratios). Furthermore, variations in halogen abundance ratios do not correlate with Ca/Pb, P/As, or P/V ratios and therefore may record alternating and season-dependent environmental parameters including biological activity, vegetation density, physico-chemical soil properties, and rainfall rate. We suggest that the zonation reflects multiple single fluid flow episodes and, hence, records surface processes. However, further experiments concerning the fractionation of halogens between fluid and PyGM are needed before halogen ratios in pyromorphite-group minerals can be used as reliable monitors of fluid-driven processes.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...