ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-13
    Description: IJERPH, Vol. 15, Pages 1728: Risk Reduction Behaviors Regarding PM2.5 Exposure among Outdoor Exercisers in the Nanjing Metropolitan Area, China International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15081728 Authors: Lilin Xiong Jie Li Ting Xia Xinyue Hu Yan Wang Maonan Sun Meng Tang Aims: This study aimed to describe risk reduction behaviors regarding ambient particulate matter with a diameter of 2.5 μm or less (PM2.5) among outdoor exercisers and to explore potential factors influencing those behaviors in the urban area of Nanjing, China. Method: A cross-sectional convenience sample survey was conducted among 302 outdoor exercisers in May 2015. Descriptive analysis was used to describe demographics, outdoor physical activity patterns, knowledge of PM2.5 and risk reduction behaviors. Multivariate logistic regression analysis was then used to explore factors that influence the adoption of risk reduction behaviors. Results: The most common behavior to reduce PM2.5 exposure was minimizing the times for opening windows on hazy days (75.5%), and the least common one was using air purifiers (19.3%). Two thirds of respondents indicated that they wore face masks when going outside in the haze (59.5%), but only 13.6% of them would wear professional antismog face masks. Participants adopting risk reduction behaviors regarding PM2.5 exposure tended to be females, 50–60 year-olds, those with higher levels of knowledge about PM2.5 and those who had children. Conclusions: These findings indicate the importance of improving knowledge about PM2.5 among outdoor exercisers. Educational interventions should also be necessary to guide the public to take appropriate precautionary measures when undertaking outdoor exercise in high PM2.5 pollution areas.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-10
    Description: IJERPH, Vol. 15, Pages 702: A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III) and Pb(II): Thermodynamics and Application Strategy International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15040702 Authors: Yue Cai Xiaoping Li Dongying Liu Changlin Xu Yuwei Ai Xuemeng Sun Meng Zhang Yu Gao Yuchao Zhang Tao Yang Jingzhi Wang Lijun Wang Xiaoyun Li Hongtao Yu The present work is the first to study co-biosorption of Pb(II) and Sb(III) by a novel bacterium and its application strategy. The biosorption characteristics of Pb(II) and Sb(III) ions from aqueous solution using B. subtilis were investigated. Optimum pH, biomass dosage, contact time and temperature were determined to be 5.00, 6.00 mg/L, 45 min and 35 °C, respectively. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by B. subtilis. Results showed that Langmuir model fitted the equilibrium data of Pb(II) better than others, while biosorption of Sb(III) obeyed the Freundlich model well. The biosorption capacity of B. subtilis biomass for Pb(II) and Sb(III) ions was found to be 17.34 ± 0.14 and 2.32 ± 0.30 mg/g, respectively. Kinetic data showed the biosorption process of Pb(II) and Sb(III) ions both followed the pseudo-second-order kinetic model, with R2 ranging from 0.974 to 0.999 for Pb(II) and from 0.967 to 0.979 for Sb(III). The calculated thermodynamic parameters, negative ∆G and positive ∆H and ∆S values, indicated the biosorption of Pb(II) and Sb(III) ions onto B. subtilis biomass in water was feasible, endothermic, and spontaneous. Bacterial bioleaching experiment revealed B. subtilis can increase the mobility of Pb(II) and Sb(III) in polluted soil when pH was close to 6 at low temperature. Consequently, B. subtilis, as a cheap and original bacterial material, could be a promising biomass to remove Pb or isolate Sb from industrial wastewater and to assist phytoremediation of Pb and Sb from weak acid or near neutral pH polluted soils at low temperature.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-08
    Description: A novel micro-electro-mechanical systems (MEMS) inertial microswitch with a flexible contact-enhanced structure to extend the contact duration has been proposed in the present work. In order to investigate the stiffness k of the stationary electrodes, the stationary electrodes with different shapes, thickness h, width b, and length l were designed, analyzed, and simulated using ANSYS software. Both the analytical and the simulated results indicate that the stiffness k increases with thickness h and width b, while decreasing with an increase of length l, and it is related to the shape. The inertial micro-switches with different kinds of stationary electrodes were simulated using ANSYS software and fabricated using surface micromachining technology. The dynamic simulation indicates that the contact time will decrease with the increase of thickness h and width b, but increase with the length l, and it is related to the shape. As a result, the contact time decreases with the stiffness k of the stationary electrode. Furthermore, the simulated results reveal that the stiffness k changes more rapidly with h and l compared to b. However, overlarge dimension of the whole microswitch is contradicted with small footprint area expectation in the structure design. Therefore, it is unreasonable to extend the contact duration by increasing the length l excessively. Thus, the best and most convenient way to prolong the contact time is to reduce the thickness h of the stationary electrode while keeping the plane geometric structure of the inertial micro-switch unchanged. Finally, the fabricated micro-switches with different shapes of stationary electrodes have been evaluated by a standard dropping hammer system. The test maximum contact time under 288 g acceleration can reach 125 µs. It is shown that the test results are in accordance with the simulated results. The conclusions obtained in this work can provide guidance for the future design and fabrication of inertial microswitches.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-23
    Description: Power hardware-in-the-loop (PHIL) systems are advanced, real-time platforms for combined software and hardware testing. Two paramount issues in PHIL simulations are the closed-loop stability and simulation accuracy. This paper presents a virtual impedance (VI) method for PHIL simulations that improves the simulation’s stability and accuracy. Through the establishment of an impedance model for a PHIL simulation circuit, which is composed of a voltage-source converter and a simple network, the stability and accuracy of the PHIL system are analyzed. Then, the proposed VI method is implemented in a digital real-time simulator and used to correct the combined impedance in the impedance model, achieving higher stability and accuracy of the results. The validity of the VI method is verified through the PHIL simulation of two typical PHIL examples.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-01
    Description: Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...