ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-17
    Description: Materials, Vol. 11, Pages 1450: Comparative Research on the Rebound Effect in Direct Electromagnetic Forming and Indirect Electromagnetic Forming with an Elastic Medium Materials doi: 10.3390/ma11081450 Authors: Xianlong Liu Liang Huang Hongliang Su Fei Ma Jianjun Li In the process of electromagnetic forming (EMF), the rebound effect caused by high speed collision between sheet and die will affect the fittability, which results in a bad forming quality of workpiece. In this paper, finite element models of direct EMF and indirect EMF with an elastic medium are established, the influence factors of fittability in indirect EMF are studied, the two forming processes are compared, and the mechanisms of reduced rebound effect in indirect EMF are revealed. The results show that: in indirect EMF, with the increase of the discharging voltage or thickness of rubber, the fittability increases and then decreases; when the thickness of driver plate is equal to the skin depth of the driver plate, the fittability is the best. The optimal process parameters of indirect EMF are as follows: the discharging voltage is 10 kV, the thickness of the rubber is 20 mm and the thickness of driver plate is 2 mm. The rebound effect in indirect EMF is reduced compared with direct EMF for the following reasons: the impact force caused by the collision between the sheet and die is balanced by the pressure provided by the rubber; the sheet is always under tensile stress state due to the friction force provided by rubber; the remaining kinetic energy of sheet after collision with the die is absorbed by rubber. Therefore, the rebound effect in indirect EMF is suppressed compared with direct EMF. So, the fittability of the workpiece is improved, which results in a better forming quality.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-15
    Description: Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...