ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Selecting suitable species to enhance ecological functions is crucial for improvements in the planning and design of roof greening and in maintaining sustainable urban development, especially in rapidly urbanized areas. Assisted by field trips to enhance studies, the present project assessed the ecological functions of 207 plant species used for roof greening in Beijing based on their key functional traits. The results indicate that regulating, cultural, supplying, and supporting functions differed significantly among species and families in the study area. Rosaceae species have higher levels of overall ecological functions than other species, and a large number of Compositae species have lower-level functions. Compared to other families, Araliaceae and Nyctaginaceae have higher mean values of cultural and supporting functions and the highest mean overall function value of 37. Ulmaceae, Sapindaceae, Ginkgoaceae, Berberidaceae, and Aceraceae have higher mean regulating, cultural, supporting, and overall function values. Amaranthaceae, Umbelliferae, Lamiaceae, Saxifragaceae, Ericaceae, and Gramineae have lower values. The existing roof greening in Beijing includes some pitfalls with respect to plant composition as well as plant selection that does not consider ecological functions. The following measures could be proposed to increase ecological functions: (1) Increasing the number of plants with shallow roots and with strong adaptation traits to roof conditions; (2) Enriching ecological communities with diverse plants with high ecological functions; and (3) Carrying out rational ecological planning and management based on detailed and objective data on plant species. Future studies should focus on specifying plant functional traits to enhance ecological functions.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Experimental research was conducted on a turbo-charged, inter-cooling and common-rail diesel engine with Fischer–Tropsch fuel synthesized from Coal-to-liquid (CTL), in order to investigate the influence of different injection parameters on the combustion, emissions and efficiency characteristics of the engine. The results showed that the ignition point was advanced, the in-cylinder pressure and heat release rate increased as the injection timing advanced and the injection pressure increased. By comparing the peak in-cylinder pressure of 100 cycles for one sample, it was found that the coefficient variation (COV) remained under 2% throughout the tests and the combustion process remained stable. NOx emissions decreased with delayed injection timing and lower injection pressure. In contrast to NOx emissions, soot emissions were almost zero when the injection pressure was up to 143.5 MPa. The indicated thermal efficiency (ITE) showed no obvious change with different injection parameters, and remained under 40% in all the tests.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...