ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-28
    Description: Statistical and climate models are frequently used for biodiversity projections under future climatic changes, but their predictive capacity for freshwater plankton may vary among different species and community metrics. Here, we used random forests to model plankton species and community metrics as a function of biological, climatic, physical, and chemical data from long‐term (2000–2017) monitoring data collected from Lake Müggelsee Berlin, Germany. We (1) compared the predictability of well‐known lake plankton metric types (biomass, abundance, taxonomic diversity, Shannon diversity, Simpson diversity, evenness, taxonomic distinctness, and taxonomic richness) and (2) assessed how the relative influence of different environmental drivers varies across lake plankton metric models. Overall, the metric predictability was highest for biomass and abundance followed by taxonomic richness. The biomass of dominant phytoplankton taxonomic groups such as cyanobacteria (adjusted‐R2 = 0.53) and the abundance of dominant zooplankton taxonomic groups such as rotifers (adjusted‐R2 = 0.59) and daphnids (adjusted‐R2 = 0.51) were more predictable than other metric types. The plankton metric predictability increased when grouping phytoplankton species according to their functional traits (adjusted‐R2 = 0.37 ± 0.14, mean ± SD, n = 36 functional groups) compared to higher taxonomic units (adjusted‐R2 = 0.25 ± 0.15, n = 22 taxonomic groups). Light, nutrients, water temperature, and seasonality for phytoplankton and food resources for zooplankton were the main drivers of both taxonomic and functional groups, giving confidence that our models captured the expected major environmental drivers. Our quantitative analyses highlight the multidimensionality of lake planktonic responses to environmental drivers and have implications for our capacity to select appropriate metrics for forecasting the future of lake ecosystems under global change scenarios.
    Description: European Union's Horizon 2020 Research and Innovation Programme
    Description: Belmont Forum
    Description: BiodivERsA
    Description: LimnoSCenES
    Keywords: ddc:579.17
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-09
    Description: Extreme wind storms can strongly influence short‐term variation in lake ecosystem functioning. Climate change is affecting storms by altering their frequency, duration, and intensity, which may have consequences for lake ecosystem resistance and resilience. However, catchment and lake processes are simultaneously affecting antecedent lake conditions which may shape the resistance and resilience landscape prior to storm exposure. To determine whether storm characteristics or antecedent lake conditions are more important for explaining variation in lake ecosystem resistance and resilience, we analyzed the effects of 25 extreme wind storms on various biological and physiochemical variables in a shallow lake. Using boosted regression trees to model observed variation in resistance and resilience, we found that antecedent lake conditions were more important (relative importance = 67%) than storm characteristics (relative importance = 33%) in explaining variation in lake ecosystem resistance and resilience. The most important antecedent lake conditions were turbidity, Schmidt stability, %O2 saturation, light conditions, and soluble reactive silica concentrations. We found that storm characteristics were all similar in their relative importance and results suggest that resistance and resilience decrease with increasing duration, mean precipitation, shear stress intensity, and time between storms. In addition, we found that antagonistic or opposing effects between the biological and physiochemical variables influence the overall resistance and resilience of the lake ecosystem under specific lake and storm conditions. The extent to which these results apply to the resistance and resilience of different lake ecosystems remains an important area for inquiry.
    Description: EU‐ITN MANTEL
    Description: Marie Sklodowska‐Curie
    Description: https://aslopubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Flno.11859&file=lno11859-sup-0001-Supinfo1.docx
    Description: https://aslopubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Flno.11859&file=lno11859-sup-0002-Supinfo2.docx
    Keywords: ddc:577.63 ; ddc:551.66
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...