ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (186)
  • International Union of Crystallography  (101)
  • 1
    Publication Date: 2020-04-22
    Description: Conventional numerical methods have made significant advances in forecasting tropical cyclone (TC) tracks, using remote sensing data with high spatial and temporal resolutions. However, over the past two decades, no significant improvements have been made with regard to the accuracy of TC intensity prediction, which remains challenging, as the internal convection and formation mechanisms of such storms are not fully understood. This study investigated the relationship between remote sensing data and TC intensity to improve the accuracy of TC intensity prediction. An intensity forecast model for the South China Sea was built using the eXtreme Gradient Boosting (XGBoost) model and FengYun-2 (FY-2) satellite data, environmental data, and best track datasets from 2006 to 2017. First, correlation analysis algorithms were used to extract the TC regions in which the satellite data were best correlated, with TC intensity at lead times of 6, 12, 18, and 24 h. Then, satellite, best track, and environmental data were used as source data to develop three different XGBoost models for predicting TC intensity: model A1 (climatology and persistence predictors + environmental predictors), model A2 (A1 + satellite-based predictors extracted as mean values), and model A3 (A1 + satellite-based predictors extracted by our method). Finally, we analyzed the impact of the FY-2 satellite data on the accuracy of TC intensity prediction using the forecast skill parameter. The results revealed that the equivalent blackbody temperature (TBB) of the FY-2 data has a strong correlation with TC intensity at 6, 12, 18, and 24 h lead times. The mean absolute error (MAE) of model A3 was reduced by 0.47%, 1.79%, 1.91%, and 5.04% in 6, 12, 18, and 24 h forecasts, respectively, relative to those of model A2, respectively, and by 2.73%, 7.58%, 7.64%, and 5.04% in 6, 12, 18, and 24 h forecasts, respectively, relative to those of model A1. Furthermore, the accuracy of TC intensity prediction is improved by FY-2 satellite images, and our extraction method was found to significantly improve upon the traditional extraction method.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-20
    Description: Groundwater is important for maintaining ecosystem balance. However, the ecological value of groundwater is always undervalued, while its value as water resources is emphasized. Thus, this paper divided the systematic valuation of groundwater-dependent ecosystems (GDEs) into three categories, and its services into four categories based on the utilization. In addition, a service valuation system was developed, with ten indicators and nine assessment models for the GDEs. We then used this model to value the GDEs services of Handan city in 2015 as a case study, with seven relevant indicators. The results show that the total value of Handan’s GDEs is 9.10 billion Renminbi (RMB, Chinese unit of currency), including a direct use value of 3.53 billion, and an indirect use value of RMB 5.57 billion. These results highlight the significant indirect use value of GDEs. Consequently, groundwater resources should be rationally exploited to maximize both direct and indirect service values on the basis of a comprehensive understanding of the inherent value of the resource.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-13
    Description: Cross-linked polyethylene, commercially known as XLPE, is widely used as an insulating material in high voltage cables. However, space charge accumulation under the DC field is one of the most challenging problems in the further development of XLPE insulated cable. Due to the potential electrical degradation ageing process triggered by the accumulated space charges, the IEEE standard 1732 was established for measuring space charge in HVDC extruded cables as the qualification tests. Previous research has revealed that space charge originates from either charge injection at the electrodes or ionization of impurities presenting inside the bulk. In the light of this, this paper aims to simulate the accumulation of space charge in XLPE under DC stress. Space charge measurements have been carried on the fresh and degassed XLPE samples. A modified bipolar charge transport model, by considering the dissociation of impurities, has been employed to simulate the space charge behavior in XLPE. Compared with the experimental observations, the simulation results can reveal appropriate features of hetero charge formation. Both the calculated charge dynamics and field variation are consistent with the experiment results. The restrictions and potential improvements of this preliminary model are also discussed for its future application of XLPE cables.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-21
    Description: To provide theoretical support for the protection of centralized drinking groundwater sources in karst areas, it is necessary to accurately identify the development of karst conduits and analyze the differences in hydrogeochemical characteristics of different karst systems. This provides a scientific basis for the accurate designation of risk zones that may cause drinking groundwater pollution. In this study, a geophysical survey, hydrogeological chemical process analysis and optimized fuzzy cluster analysis were used to gradually improve the understanding of karst water systems. AMT and HDR methods were used to calibrate the resistivity around the water-filling karst conduits, which ranged from 39 to 100 Ω•m. A total of seven karst systems were identified, including four karst systems in the north of the study area, one karst system in the west and two karst systems in the south. Analysis of the hydrochemical data showed that HCO3-Ca and HCO3-Mg-Ca types accounted for 90% of all samples. The δD and δ18O values of their main conduits were −51.70‰ to −38.30‰ and −7.99‰ to −5.96‰, respectively. The optimized fuzzy clustering analysis method based on the weight of variables assigned by AHP more accurately verified karst water systems. Based on these findings, the drinking groundwater source risk zone was designated with an area of 33.90 km2, accounting for 34.5% of the study area. This study effectively improved the rationality and accuracy of the designation of drinking groundwater source risk zones in karst areas, and provided a scientific basis for the identification of karst water systems and decision-making of drinking groundwater source protection in karst areas.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-30
    Description: The acceleration characteristics of fragments generated from explosively-driven cylindrical shells are important issues in warhead design. However, there is as yet no reasonable theory for predicting the acceleration process of a specific metallic shell; existing approaches either ignore the effects of shell disintegration and the subsequent gas leakage on fragment acceleration or treat them in a simplified manner. In this paper, a theoretical model was established to study the acceleration of discrete fragments under the combined effect of shell disintegration and gas leakage. Firstly, an equation of motion was developed, where the acceleration of a cylindrical shell and the internal detonation gas was determined by the motive force impacting the inner surface of the metallic cylinder. To account for the force decrease induced by both the change in fragment area after the shell disintegrates and the subsequent drop in gas pressure due to gas leakage, the equation of motion was then associated with an equation for the locally isentropic expansion of the detonation gas and a modified gas-leakage equation. Finally, theoretical analysis was conducted by solving the associated differential equations. The proposed model showed good agreement with experimental data and numerical simulations, indicating that it was suitable for predicting the acceleration of discrete fragments generated from a disintegrated warhead shell. In addition, this study facilitated a better understanding of the complicated interaction between fragment acceleration and gas outflow.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-03
    Description: The “Qinling-Huaihe Line” is the recognized geographical boundary between north and south China. In the context of a widening north–south gap, the large-scale population flow and the implementation of the regional coordinated development strategy, the north–south differentiation of the Chinese population requires further investigation. This study is based on national census data and uses quantitative methods, such as the centralization index, coefficient of variation, hot spot analysis and geodetector, as research methods. This study takes the Qinling-Huaihe Line as the dividing line and aims to extensively explore the spatial differentiation, evolutionary characteristics, and influential factors of the populations on both sides. The main conclusions are as follows: ① From 1982 to 2010, the population share ratio on the south and north sides of the Qinling-Huaihe Line remained at 58:42, showing a distribution pattern of “South more and North less”. ② The area within 200 km from the Qinling-Huaihe Line is a transition area with a stable distribution of the populations on both sides. ③ From 1982 to 2010, the concentration of the population distribution gradually increased on both sides, and the concentration of population on the south side was higher; the characteristics of population growth had significant spatial differences between the two sides. ④ The results calculated by the geodetector method show that socioeconomic factors are the main factors causing the spatial differentiation of the populations, while physical geographical environmental factors have a smaller influence and their influence continues to decrease.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-25
    Description: Organic phase change materials (PCMs) have great potential in thermal protection applications but they suffer from high volumetric change and easy leakage, which require “leak-proof” packaging materials with low thermal conductivity. Herein, we successfully modify SiO2 through a simple 2-step method consisting of n-hexane activation followed by short-chain alkane silanization. The modified SiO2 (M-SiO2) exhibits superior hydrophobic property while maintaining the intrinsic high porosity of SiO2. The surface modification significantly improves the absorption rate of RT60 in SiO2 by 38%. The M-SiO2/RT60 composite shows high latent heat of 180 J·g−1, low thermal conductivity of 0.178 W·m−1·K−1, and great heat capacity behavior in a high-power thermal circuit with low penetrated heating flow. Our results provide a simple approach for preparing hydrophobic SiO2 with high absorption of organic PCM for thermal protection applications.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-05
    Description: In this work, the CMK-3 is successfully prepared with SBA-15 as the template and first annealed to 2000 °C to improve thermal conductivity. The annealed CMK-3 has a thermal conductivity of 6.981 W m−1 K−1 higher than un-annealed CMK-3. The annealed CMK-3 is used to encapsulate the RT44HC, and RT44HC/annealed CMK-3 has 10-fold of thermal conductivity and enhanced thermal stability than RT44HC. The RT44HC/annealed CMK-3 has a large melting enthalpy of 177.8 J g−1 and good thermal stability. The RT44HC/annealed CMK-3 has optical absorptive coefficient of visible range of solar spectrum, which identify seven-fold higher than RT44HC. The RT44HC/annealed CMK-3 has great photo-thermal performance, and the photo-driven energy charging and discharging rate of RT44HC/annealed CMK-3 is almost 30-fold larger than the RT44HC. The results show that the annealed CMK-3 is a great mesoporous carbon nanomaterial for phase change materials and the annealed CMK-3 based phase change material has great potential in solar thermal utilizations such as solar water heating system and solar heating building systems.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-29
    Description: Sodium superionic conductor (NASICON)-type lithium aluminum germanium phosphate (LAGP) has attracted increasing attention as a solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), due to the good ionic conductivity and highly stable interface with Li metal. However, it still remains challenging to achieve high density and good ionic conductivity in LAGP pellets by using conventional sintering methods, because they required high temperatures (〉800 °C) and long sintering time (〉6 h), which could cause the loss of lithium, the formation of impurity phases, and thus the reduction of ionic conductivity. Herein, we report the utilization of a spark plasma sintering (SPS) method to synthesize LAGP pellets with a density of 3.477 g cm−3, a relative high density up to 97.6%, and a good ionic conductivity of 3.29 × 10−4 S cm−1. In contrast to the dry-pressing process followed with high-temperature annealing, the optimized SPS process only required a low operating temperature of 650 °C and short sintering time of 10 min. Despite the least energy and short time consumption, the SPS approach could still achieve LAGP pellets with high density, little voids and cracks, intimate grain–grain boundary, and high ionic conductivity. These advantages suggest the great potential of SPS as a fabrication technique for preparing solid electrolytes and composite electrodes used in ASSLIBs.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-03-10
    Description: Exploiting effective therapies to fight tumor growth is an important part of modern cancer research. The anti-cancer activities of many plant-derived substances are well known, in part because the substances are often extensively distributed. Chicoric acid, a phenolic compound widely distributed in many plants, has drawn widespread attention in recent years because of its extraordinary anti-cancer activities. However, traditional methods for quantifying chicoric acid are inefficient and time-consuming. In this study, an ultrasensitive non-enzymatic sensor for the determination of chicoric acid was developed based on the use of an Au@Pt-polyetherimide-reduced graphene oxide (PEI-RGO) nanohybrid-modified glassy carbon electrode. Owing to the considerable conductivity of PEI-functionalized RGO and the efficient electrocatalytic activity of Au@Pt nanoalloys, the designed sensor exhibited a high capacity for chicoric acid measurement, with a low detection limit of 4.8 nM (signal-to-noise ratio of 3) and a broad linear range of four orders of magnitude. With the advantages provided by the synergistic effects of Au@Pt nanocomposites and PEI-RGO, the developed sensor also revealed exceptional electrochemical characteristics, including superior sensitivity, fast response, acceptable long-term stability, and favorable selectivity. This work provides a powerful new platform for the highly accurate measurement of chicoric acid quantities, facilitating further research into its potential as a cancer treatment.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...