ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instituto de Ciencias del Mar - CSIC  (1)
  • SPRINGER HEIDELBERG  (1)
  • 1
    facet.materialart.
    Unknown
    Instituto de Ciencias del Mar - CSIC
    In:  Scientia Marina, 65 (Suppl. 1). pp. 41-49.
    Publication Date: 2015-11-24
    Description: During the cruise F/S Poseidon 212/3 (September 30-October 8, 1995) determination of carbon system variables was carried out over the section of La Palma-La Graciosa and at the ESTOC station in the Canary Island area. Total alkalinity and pH in the total scale at 25 degreesC were determined at 24 stations from surface to bottom. In this area, the presence of different water masses can be traced by the carbon system variables. NACW is defined by a strong gradient of A(T) and pH from 150 to 750 m. MW is characterised by high values of A(T) and pH between 1000 to 1200 in and AAIW signals are found at around 900 in in the strait between Gran Canaria and Fuerteventura with low A(T), low pH and a maximum of fCO(2). Assuming an atmospheric mean value of fCO(2) of 360 mu atm and an average surface value of 393 +/-7 mu atm, we can conclude that during this cruise this oceanic area tends to release CO2 into the atmosphere, acting as a weak source with a carbon flux towards the atmosphere of +8.0 +/-1.8 mmol.m(-2)d(-1). The saturation levels in the Canary Island area have been found to be higher than 3600 m for calcite and 2700 in for aragonite. The inorganic carbon/organic carbon ratio (IC/OC) varies from 0.07 at 300 m to 0.5 at 3000 m. The IC/OC ratio shows that about a 34% increase in the C-T of the deep water is contributed by the inorganic CaCO3 dissolution. The IC at 300 in is around 7 mu mol kg(-1), increasing with depth to 37.5 mu mol kg(-1) at 3700 m.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-02
    Description: Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 〈 γ n 〈  27.4) along the Prime Meridian. Significant positive trends were found in DIC (0.70 ± 0.4 μmol kg− 1 year− 1) and nitrate (0.08 ± 0.06 μ mol kg− 1 year− 1) along with decreasing trends in temperature (− 0.015 ± 0.01∘C year− 1) and salinity (− 0.003 ± 0.002 year− 1) in the AAIW. Accompanying this is an increase in apparent oxygen utilization (AOU, 0.16 ± 0.07 μ mol kg− 1 year− 1). We estimated that 75% of the DIC change has an anthropogenic origin. The remainder of the trends support a scenario of a strengthening of the upper-ocean overturning circulation in the Atlantic sector of the Southern Ocean in response to the positive trend in the Southern Annular Mode. A decrease in net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...