ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-09
    Description: In this work we report the ongoing characterization of the Sos Enattos former mine (Sardinia, Italy), one of the two candidate sites for the Einstein Telescope (ET), the European third-generation underground interferometric detector of Gravitational Waves. The Sos Enattos site lies on a crystalline basement, made of rocks with good geomechanical properties, characterized by negligible groundwater. In addition, the site has a very low seismic background noise due to the absence of active tectonics involving Sardinia. Finally, the area has a low population density, resulting in a reduced anthropic noise even at the ground level. This location was already studied in 2012-2014 as a promising site for an underground detector. More recently, in March 2019, we deployed a new network of surface and underground seismometers at the site, that is currently monitoring the local seismic noise. Most of the energy carried by the seismic waves is due to the microseisms below 1 Hz, showing a significant correlation with the waves of the west Mediterranean sea. Above 1 Hz the seismic noise in the underground levels of the mine approaches the Peterson's low noise model. Exploiting mine blasting works into the former mine, we were also able to perform active seismic measurements to evaluate the seismic waves propagation across the area. In conclusion we also give a first assessment about the acoustic and magnetic noise in this underground site.
    Description: Published
    Description: 012242
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-18
    Description: We present a detailed analysis of the small magnitude (ML 〈 3) Reservoir Induced Seismicity associated with the Pertusillo water reservoir located in the high seismic hazard zone of Val d'Agri (Southern Italy). We apply template-matching detection to a 13-month-long dense passive survey, obtaining a final high-precision double-difference catalog of 5,070 earthquakes (−0.7 〈 ML 〈 2.6, MC = 0.2). The new catalog allows precisely tracking the spatiotemporal distribution of the swarm-seismicity and to map the b-value of the Gutenberg-Richter law. We combine seismicity data with available subsurface geophysical data, fostering an improved interpretation of the induced seismicity. We identify four seismicity-clusters showing rapid changes in seismic rate which correlate to severe seasonal oscillations. Seismicity unravels new km-scale faults or better define faults partially-illuminated by template earthquakes. b-value shows a significant spatial variability, with very-high b-value (up to 2) within areas of distributed seismicity and lower (∼1.3) b-value for on-fault seismicity featuring larger magnitude events. Seismicity is confined within a brine-saturated fractured carbonate reservoir, while earthquake distribution and rate are controlled by the fault architecture and rock properties (e.g., inherited fluid pathways, rock fracturing, pore fluid pressure). In particular, most earthquakes reactivate, with extensional kinematics, pre-existing reverse/transpressional faults favorably oriented in the present-day extension. All observations suggest that a poroelastic stress transmission mechanism, due to the seasonal water level oscillation, can explain the Pertusillo lake seismicity. This study confirms the importance of investigating the complex interaction among stress changes caused by human activities, pre-existing faults and local stress field to correctly assess the hazard posed by induced seismicity.
    Description: PRIN-MUSE-4D project of the Italian PRIN-MIUR program (Grant 2017KT2MKE).
    Description: Published
    Description: e2022JB025879
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-13
    Description: The incompleteness of earthquake catalogs is a well-known issue caused by our technical limitation in detecting the small-to very small-magnitude seismicity falling near or below the background seismic noise. The detection of small-magnitude events is fundamental for improving our knowledge of geometry and kinematics of seismogenic sources and the spatio-temporal characteristics of seismicity, thus leading to better models for seismic hazard. Template-matching (TM) is a powerful technique that, based on similarity measure (cross-correlation) of seismic waveforms, allows to detect hidden earthquakes that are similar to known events (called templates). The high computational effort often limits such technique to small areas and for short time frames (less than 1 year). In this work, we present the first application of template-matching at regional scale for the Italian Peninsula, focusing on the Southern Apennines. We use about 3,600 high-quality events as templates, scanning 6-year long continuous recordings (2009–2014), at more than 180 stations of the INGV network. About 20,000 new events are found, showing a comparable quality to the template catalog in terms of hypocentral solution, reaching a decrease of the magnitude of completeness of about one unit. To highlight the improved quality of the TM catalog, we report two main examples regarding the Sannio-Matese area, where TM allowed us to unravel relevant details on the spatio-temporal distribution of the local seismicity.
    Description: - PRIN-2017 project MUSE 4D (2017KT2MKE) Overtime tectonic, dynamic and rheologic control on destructive multiple seismic events—Special Italian Faults and Earthquakes: From real 4-D cases to models. - FURTHER project “The role of FlUids in the pReparaTory pHase of EaRthquakes in Southern Apennines” funded by the Strategic Earthquake Department of Istituto Nazionale di Geofisica e Vulcanologia (Italy).
    Description: Published
    Description: e2023GC011160
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...