ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-02
    Description: Impact loads widely exist in practical engineering and often cause cumulative damage and cracks or even fracture failure of concrete structures with their repeated long-term action. This experimental research is conducted on the damage evolution characteristics of concrete under impact loads by regarding C50 nonreinforced concrete as the research object and using a self-developed drop-weight device with electromechanical impedance measurement technology. Results show the following. (1) Under low-energy impact, concrete damage has long continuous development process and remarkable cumulative effects. An apparently sudden break characteristic appears before failure. Under high-energy impact, concrete damage accumulates rapidly, and piezoceramic patch signals grow linearly. (2) The root mean square deviation (RMSD) of the concrete increases exponentially with impact times. Particularly, when the RMSD exceeds 0.075, the concrete damage process enters the rapid development stage and approaches the critical failure state. (3) Under the experimental conditions in this study, the relationship between the ultimate impact times (damage life) and impact heights of the concrete samples shows the development trend of the power function. The above results can provide reference for the research on service life prediction methods of concrete structures under impact loads.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-04
    Description: The aim of this paper is to study the numerical contour integral methods (NCIMs) for solving free-boundary partial differential equations (PDEs) from American volatility options pricing. Firstly, the governing free-boundary PDEs are modified as a unified form of PDEs on the fixed space region; then performing Laplace-Carson transform (LCT) leads to ordinary differential equations (ODEs) which involve the unknown inverse functions of free boundaries. Secondly, the inverse free-boundary functions are approximated and optimized by solving of the free-boundary values of the perpetual American volatility options. Finally, the ODEs are solved by the finite difference methods (FDMs), and the results are restored via the numerical Laplace inversion. Numerical results confirm that the NCIMs outperform the FDMs for solving free-boundary PDEs in regard to the accuracy and computational time.
    Print ISSN: 1026-0226
    Electronic ISSN: 1607-887X
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-26
    Description: A heterogeneous equivalent beam model (HEB model) of the shield tunnel segment structure is proposed based on a systematical analysis on the stress state of the cross section of segment joints. This model treats a noncontinuous segment structure as a continuous heterogeneous structure, on the basis of the principle of equivalent stress state on a section and equivalent conversion of the mechanical parameters. For a comprehensive demonstration of the proposed HEB model, an interpretative solution of equivalent mechanical parameters of the joint section is obtained through theoretical derivation, and a specific iterative computation flow is provided in accordance. Model validation and comparative analysis are also conducted for two industrial applications. It is found that the iterative process of calculation has good convergence, leading to reliable numerical results for all cases under consideration. Resulting simulations reveal that the proposed HEB model can reflect the effect of joints on overall rigidity of a segment structure. Compared with the computation results obtained using other models presented in the literature, there are smaller axial force deviation and larger bending moment deviation (up to 20% or higher), demonstrating that the model selection is important in design and computation of a segment structure of shield tunnels. The proposed model and analysis for model performance may provide useful reference for engineers in shield tunnel community.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-12
    Description: Oil-contaminated soils have been paid much attention due to the reclamation of industrial lands in coastal cities of China. As known, oil-contaminated soils are inapplicable for construction due to their weak engineering properties, thus leading to the requirement of remediation and reclamation for oil-contaminated sites. This study presents an experimental investigation on the stabilization of contaminated soils with Portland cement. Investigations including the Atterberg limits, unconfined compressive strength, direct shear strength, and microstructure of cement-stabilized soils have been carried out, verifying the suitability of applying cement to improve engineering properties. Experimental results show that the geotechnical properties of contaminated soil are very poor. With the application of cement, the liquid limit and plasticity index of contaminated soil samples decrease dramatically, and the strength of treated soils has been improved. Experimental results from scanning electron microscope (SEM) indicate that cement-stabilized oil-contaminated soil is featured with a stable supporting microstructure, owing to the cementation between soil particles. This also confirms the applicability of cement to be served as an additive to treat oil-contaminated soils.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-15
    Description: Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...