ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (1)
  • Hindawi  (1)
  • Molecular Diversity Preservation International  (1)
  • 1
    Publication Date: 2020-07-11
    Description: Hyaloclastites commonly form high-quality reservoir rocks in volcanic geothermal provinces. Here, we investigated the effects of confinement due to burial following prolonged accumulation of eruptive products on the physical and mechanical evolution of surficial and subsurface (depths of 70 m, 556 m, and 732 m) hyaloclastites from Krafla volcano, Iceland. Upon loading in a hydrostatic cell, the porosity and permeability of the surficial hyaloclastite decreased linearly with mean effective stress, as pores and cracks closed due to elastic (recoverable) compaction up to 22-24 MPa (equivalent to ~1.3 km depth in the reservoir). Beyond this mean effective stress, denoted as P∗, we observed accelerated porosity and permeability reduction with increasing confinement, as the rock underwent permanent inelastic compaction. In comparison, the porosity and permeability of the subsurface core samples were less sensitive to mean effective stress, decreasing linearly with increasing confinement as the samples compacted elastically within the conditions tested (to 40 MPa). Although the surficial material underwent permanent, destructive compaction, it maintained higher porosity and permeability than the subsurface hyaloclastites throughout the experiments. We constrained the evolution of yield curves of the hyaloclastites, subjected to different effective mean stresses in a triaxial press. Surficial hyaloclastites underwent a brittle-ductile transition at an effective mean stress of ~10.5 MPa, and peak strength (differential stress) reached 13 MPa. When loaded to effective mean stresses of 33 and 40 MPa, the rocks compacted, producing new yield curves with a brittle-ductile transition at ~12.5 and ~19 MPa, respectively, but showed limited strength increase. In comparison, the subsurface samples were found to be much stronger, displaying higher strengths and brittle-ductile transitions at higher effective mean stresses (i.e., 37.5 MPa for 70 m sample, 〉75 MPa for 556 m, and 68.5 MPa for 732 m) that correspond to their lower porosities and permeabilities. Thus, we conclude that compaction upon burial alone is insufficient to explain the physical and mechanical properties of the subsurface hyaloclastites present in the reservoir at Krafla volcano. Mineralogical alteration, quantified using SEM-EDS, is invoked to explain the further reduction of porosity and increase in strength of the hyaloclastite in the active geothermal system at Krafla.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-01
    Description: Deeply buried sandstones in sedimentary basins typically have low porosity due to cementation and compaction. There are several known causes of anomalously high porosity in sandstones, one of which is microquartz coatings on sand grains that seem to inhibit growth of quartz cement. However, there has been no mechanistic understanding of why or how microquartz grows, or why it maintains high porosity in sandstones. Here we have used high-resolution scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy to study the microquartz-cemented Late Cretaceous Heidelberg Formation, Germany. We have revealed that a nanofilm of amorphous silica (50–100 nm) and a layer of chalcedony are between the detrital grain and microquartz cement. The amorphous silica insulates the detrital quartz grains and prevents syntaxial growth, while microquartz adopts the orientation of the underlying chalcedony with its fast-growth c axis parallel to the grain surface, thus preventing growth into the pore. Now that we know what controls microquartz growth and why it preserves porosity, it can be used to help identify, rank, and appraise deeply buried petroleum accumulations.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-03
    Description: Petroleum-rich basins at a mature stage of exploration and production offer many opportunities for large-scale Carbon Capture and Storage (CCS) since oil and gas were demonstrably contained by low-permeability top-sealing rocks, such as shales. For CCS to work, there must be effectively no leakage from the injection site, so the nature of the top-seal is an important aspect for consideration when appraising prospective CCS opportunities. The Lower Cretaceous Rodby Shale and the Palaeocene Lista Shale have acted as seals to oil and gas accumulations (e.g., the Atlantic and Balmoral fields) and may now play a critical role in sealing the Acorn and East Mey subsurface carbon storage sites. The characteristics of these important shales have been little addressed in the hydrocarbon extraction phase, with an understandable focus on reservoir properties and their influence on resource recovery rates. Here, we assess the characteristics of the Rodby and Lista Shales using wireline logs, geomechanical tests, special core analysis (mercury intrusion) and mineralogical and petrographic techniques, with the aim of highlighting key properties that identify them as suitable top-seals. The two shales, defined using the relative gamma log values (or Vshale), have similar mean pore throat radius (approximately 18 nm), splitting tensile strength (approximately 2.5 MPa) and anisotropic values of splitting tensile strength, but they display significant differences in terms of wireline log character, porosity and mineralogy. The Lower Cretaceous Rodby Shale has a mean porosity of approximately 14 %, a mean permeability of 263 nD (2.58 × 10−19 m2), and is calcite rich and has clay minerals that are relatively rich in non-radioactive phases such as kaolinite. The Palaeocene Lista Shale has a mean porosity of approximately 16% a mean permeability of 225 nD (2.21 × 10−19 m2), and is calcite free, but contains abundant quartz silt and is dominated by smectite. The 2% difference in porosity does not seem to equate to a significant difference in permeability. Elastic properties derived from wireline log data show that Young’s modulus, material stiffness, is very low (5 GPa) for the most shale (clay mineral)-rich Rodby intervals, with Young’s modulus increasing as shale content decreases and as cementation (e.g., calcite) increases. Our work has shown that Young’s modulus, which can be used to inform the likeliness of tensile failure, may be predictable based on routine gamma, density and compressive sonic logs in the majority of wells where the less common shear logs were not collected. The predictability of Young’s modulus from routine well log data could form a valuable element of CCS-site top-seal appraisals. This study has shown that the Rodby and Lista Shales represent good top-seals to the Acorn and East Mey CCS sites and they can hold CO2 column heights of approximately 380 m. The calcite-rich Rodby Shale may be susceptible to localised carbonate dissolution and increasing porosity and permeability but decreasing tendency to develop fracture permeability in the presence of injected CO2, as brittle calcite dissolves. In contrast, the calcite-free, locally quartz-rich, Lista Shale will be geochemically inert to injected CO2 but retain its innate tendency to develop fracture permeability (where quartz rich) in the presence of injected CO2.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...