ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GFZ Data Services  (2)
  • NATL ACAD SCIENCES  (1)
  • 1
    Publication Date: 2022-01-21
    Description: Abstract
    Description: Monthly gravity fields from Swarm A, B, and C, using the integral equation approach with short arcs. Software: GROOPS; Approach: Short-arc approach (Mayer-Gürr, 2006); Kinematic orbit product: IfG Graz: https://ftp.tugraz.at/outgoing/ITSG/satelliteOrbitProducts/operational/Swarm-1/kinematicOrbit/; Arc length: 45 minutes; Reference GFM: GOCO06s (Kvas et. al, 2021), monthly mean has been added back to the solution; Drag model: NRLMSIS2; SRP and EARP and EIRP models: Vielberg & Kusche (2020); Empirical parameters: + for non-gravitational accelerations (sum of Drag+SRP+EIRP+EARP): Bias per arc and direction; + for Drag: Scale per arc and direction; + for radiation pressure (sum of SRP+EIRP+EARP): Scale per day and direction; Non-tidal model: Atmosphere and Ocean De-aliasing Level 1B RL06 (Dobslaw et al., 2017); Ocean tidal model: 2014 finite element solution FES2014b (Carrere et al., 2015); Atmospheric tidal model: AOD1B RL06 atmospheric tides ; Solid Earth tidal model: IERS2010; Pole tidal model: IERS2010; Ocean pole tidal model: IERS2010 (Desai 2002); Third-body perturbations: Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn, following the JPL DE421 Planetary and Lunar Ephemerides (Folkner et al., 2014).
    Keywords: Swarm ; monthly gravity field model ; ICGEM ; geodesy ; global gravity field model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-01
    Description: Abstract
    Description: The dataset (Mielke et al, 2023) consists of daily ASCII-files, each containing the spherical harmonic coefficients (SHCs) for atmosphere, hydrology, and ocean bottom pressure. The files that include the AH+O coefficients are provided in the AOD format of the GFZ with the naming convention TYPE_YYYY-MM-DD_X_01.asc and contain header information (30 lines) and four columns with degree (n) order (m) and Stokes coefficients cnm and snm. Coefficients in each file are split up into different subsets, each corresponding to a subdaily time step (i.e., a daily file with 3-hour temporal resolution is split up into 8 subsets). The entire dataset is organized following the folder structure /TYPE/NEST/coeff_aodFormat_XXX/. We provide regional refined (nested), coarse grained (nested, but with a lower resolution version of the regional model), or global model solutions of SHCs for each datatype. Some datasets are available in different spectral resolutions, with d/o up to 179, 180, or 360. In this release all AH+O coefficients have a temporal resolution of 3 hours, except the non-regional refined atmospheric solution, which is given 6-hourly. Currently, the whole data set is provided for June 2007 and some components for the whole year 2007. Additional months and years will be added with newer versions of the dataset or can be provided by the authors on request. For the atmospheric and hydrological background model, regional models with high spatial and temporal resolution are nested into global models: Therefore, global and regional models must be resampled and interpolated on the same regular grid with equivalent time epochs. For the nesting, the global model is interpolated on the same grid resolution as the regional model. Grid points of the global model are than replaced with the data of the regional model of the CORDEX-EU region. A Gaussian filter is applied in a transition zone with a width of 7.5° to reduce an edge effect (Gibbs effect) between the two combined models.
    Description: Other
    Description: A deep understanding of mass distribution and mass transport in System Earth is needed to answer central questions in hydrology, oceanography, glaciology, geophysics and climate research. The necessary information is primarily derived from satellite mission data as observed by GRACE (Gravity Recovery and Climate Experiment) and GRACE-FO (Follow-on) describing the gravity field of the Earth and its temporal variations. The research group (RG) „New Refined Observations of Climate Change from Spaceborne Gravity Missions (NEROGRAV)”, funded by the German Research Foundation (DFG), develops since May 2019 new analysis methods and modeling approaches to improve GRACE and GRACE-FO mission data analysis and focuses on geophysical applications that benefit from significantly reduced error levels in the time series of monthly gravity fields. Phase 1 lasted from May 2019 till April 2022. After successful evaluation in January 2022 the second phase started in January 2023. The central hypothesis of the research group, slightly updated for phase 2, is: Only by concurrently improving and better understanding of sensor data, background models, and processing strategies of satellite gravimetry, the resolution, accuracy, and long-term consistency of mass transport series can be significantly increased; the science return in various fields of application improved and the potential of future technological sensor developments fully exploited. All groups participating in NEROGRAV have a long-term heritage of expertise in geodetic data acquisition and modeling and will additionally contribute their unique complementary expertise from various neighboring disciplines such as oceanography, hydrology, solid Earth, geophysics and atmospheric and climate sciences. Therefore, it is expected that the second funding phase will not only create significantly improved GRACE/GRACE-FO gravity field models over two decades, but also enable geophysical applications based on this long-term series such as quantifying North Atlantic deep water transports as indicator for variations in the Atlantic Meridional Overturning Circulation (AMOC), assessment of hydrometeorological extreme events or identification of climatic signatures in variations of the terrestrial water storage. Important results and datasets of phase 1 can be found at GFZ Data Services.
    Keywords: New Refined Observations of Climate Change from Spaceborne Gravity Missions ; NEROGRAV ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 HYDROLOGIC AND TERRESTRIAL WATER CYCLE MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    NATL ACAD SCIENCES
    In:  EPIC3Proceedings of the National Academy of Sciences of the United States of America, NATL ACAD SCIENCES, 113(6), pp. 1504-1509, ISSN: 0027-8424
    Publication Date: 2017-01-27
    Description: Significance Understanding sea-level change is of paramount importance because it reflects climate-related factors, such as the ocean heat budget, mass changes in the cryosphere, and natural ocean/atmosphere variations. Furthermore, sea-level rise directly affects coastal areas, which has ramifications for its population and economy. From a novel combination of Gravity Recovery And Climate Experiment and radar altimetry data we find over the last 12 y: (i) a larger global steric sea-level rise as previously reported, (ii) a mass contribution to global sea level consistent with mass loss estimates from the world’s ice sheets, glaciers, and hydrological sources, and (iii) regionally resolved sea-level budget components which differ significantly from that of the global sea-level budget. Abstract Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002–2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y2) are offset by a negative hydrological component (−0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to −2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...