ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-01
    Print ISSN: 1042-8275
    Electronic ISSN: 2377-617X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-03-01
    Print ISSN: 1042-8275
    Electronic ISSN: 2377-617X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Serpentinized and metasomatized peridotites intruded by gabbros and dolerites have been drilled on the southern wall of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) during International Ocean Discovery Program (IODP) Expedition 357. They occur in seven holes from five sites making up an east-west trending, spreading-parallel profile that crosscuts this exhumed detachment footwall. Here we have taken advantage of this sampling to study heterogeneities of alteration at scales less than a kilometer. We combine textural and mineralogical observations made on 77 samples with in situ major and trace element analyses in primary and serpentine minerals to provide a conceptual model for the development of alteration heterogeneities at the Atlantis Massif. Textural sequences and mineralogical assemblages reveal a transition between an initial pervasive phase of serpentinization and subsequent serpentinization and metasomatism focused along localized pathways preferentially used by hydrothermal fluids. We propose that these localized pathways are interconnected and form 100 m- to 1 km-sized cells in the detachment footwall. This change in fluid pathway distribution is accompanied by variable trace element enrichments in the serpentine textures: deep, syn-serpentinization fluid-peridotite interactions are considered the source of Cu, Zn, As, and Sb enrichments, whereas U and Sr enrichments are interpreted as markers of later, shallower fluid-serpentinized peridotite interaction. Alteration of gabbros and dolerites emplaced in the peridotite at different lithospheric levels leads to the development of amphibole, chlorite and, or, talc-bearing textures as well as enrichments in LREE, Nb, Y, Th, Ta in the serpentine textures of the surrounding peridotites. Combining these observations, we propose a model that places the drill holes in a conceptual frame involving mafic intrusions in the peridotites and heterogeneities during progressive alteration and emplacement on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-28
    Description: Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (〈1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO2–dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
    Description: Published
    Description: 796376
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 4A. Oceanografia e clima
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 94–99, doi:10.5670/oceanog.2012.07.
    Description: In the classic mid-ocean ridge model, new seafloor is generated through a combination of magmatic diking feeding lava flows at the spreading axis, and the formation of short-offset, high-angle normal faults that dip toward the axis. These processes lead to the formation of a layered magmatic crust and linear, ridge-parallel abyssal hills on both ridge flanks. This model of ocean crust generation applies well to fast-spreading mid-ocean ridges (i.e., 〉 80 mm yr–1), but it is not always valid at slower-spreading ridges. Instead, at slow-spreading ridges such as the Mid-Atlantic Ridge (MAR), which is opening at about 25 mm yr–1, the formation of long-lived faults (called detachments) on one flank of the ridge axis is an important process in seafloor formation (Cann et al., 1997; Karson, 1999; MacLeod et al., 2009; Schroeder et al., 2007; Smith et al., 2008; Tucholke et al., 1998). In fact, active detachment faults have been identified along nearly half of the MAR axis between 12° and 35°N (Escartín et al., 2008).
    Description: This study was undertaken with US National Science Foundation (NSF) support to HS and DKS, and Centre National de la Recherche Scientifique support to JE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...