ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mundl-Petermeier, A., Walker, R. J., Jackson, M. G., Blichert-Toft, J., Kurz, M. D., & Halldorsson, S. A. Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume. Chemical Geology, 525, (2019): 245-259. doi: 10.1016/j.chemgeo.2019.07.026.
    Description: Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
    Description: This study was supported by NSF grant EAR-1624587 (to RJW and AMP). AMP acknowledges FWF grant V659-N29. MJ acknowledges NSF grant EAR-1624840, and MK acknowledges OCE-1259218. We would like to thank Lotte M. Larsen and Asger K. Pedersen for providing the West Greenland samples, and Bernard Marty for the samples from East Greenland. We thank Catherine Chauvel for the editorial handling and Rita Parai, Dominique Weis, David Graham and an anonymous reviewer for the helpful and constructive comments on this and an earlier version of the manuscript.
    Keywords: μ182W ; Iceland ; Mantle plume ; 3He/4He ; Primordial reservoir
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-06
    Description: Here, we characterize the temporal evolution of volatiles during the Tajogaite eruption by analyzing the elemental (He-Ar-CO2-N2) and isotopic (He-Ar-Ne) composition of fluid inclusions (FI) in phenocrysts (olivine+ pyroxene) identified in erupted lavas. Our 2021 lava samples identify substantial temporal variations in volatile composition. We show that, during the 2021 Tajogaite eruption, the He-CO2-N2 concentrations in FI increased since October 15th; this increase was accompanied by increasing 40Ar/36Ar ratios (from ~300 to 〉500), and paralleled a major shift in bulk lava chemistry, with increasing Mg contents (Mg#, from 47 to 52 to 55–59), CaO/Al2O3 (from 0.65 to 0.74 to 0.75–0.90), Ni and Cr, and decreasing TiO2, P2O5 and incompatible elements. The olivine core composition also became more forsteritic (from Mg# = 80–81 to Mg# = 84–86). Mineral thermobarometry and FI barometry results indicate that the eruption was sustained by magmas previously stored in at least two magma accumulation zones, at respectively ~6–12 km and 15–30 km, corroborating previous seismic and FI evidence. We therefore propose that the compositional changes seen throughout the eruption can be explained by an increased contribution - since early/mid-October - of more primitive, less degassed magma from the deeper (mantle) reservoir. Conversely, Rc/Ra values (3He/4He ratios corrected for atmospheric contamination) remained constant throughout the whole eruption at MORB-like values (7.38 ± 0.22 Ra, 1σ), suggesting an isotopically homogeneous magma feeding source. The Tajogaite He isotope signature is within the range of values observed for the 1677 San Antonio lavas (7.37 ± 0.17Ra, 1σ), but is more radiogenic than the 3He/4He values (〉9 Rc/Ra) observed in the Caldera de Taburiente to the north. The 3He/4He ratios (6.75 ± 0.20 Ra, 1σ) measured in mantle xenoliths from the San Antonio volcano indicate a relatively radiogenic nature of the mantle beneath the Cumbre Vieja ridge. Based on these results and mixing modeling calculations, we propose that the homogeneous He isotopic signatures observed in volatiles from the Tajogaite/San Antonio lavas reflect three component mixing between a MORB-like source, a radiogenic component and small additions (6–15%) of a high 3He/4He reservoir-derived (〉9Ra) fluid components. The simultaneous occurrence of high 3He/4He (〉9Ra)- and MORB-like He signatures in northern and southern La Palma is interpreted to reflect small-scale heterogeneities in the local mantle, arising from spatially variable proportions of MORB, radiogenic, and high 3He/4He components.
    Description: Published
    Description: 107928
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: La Palma ; 2021 Tajogaite eruption ; Fluid inclusions ; Noble gas ; Magma feeding system ; Mantle source heterogeneity ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...