ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • Elsevier  (7)
  • Molecular Diversity Preservation International
Collection
Publisher
Years
  • 1
    Publication Date: 2020-02-06
    Description: We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from −0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (−0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (−0.39 to −0.07‰) with a mean of −0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (−0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo concentrations of all the ultramafic xenoliths of 40–400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113–180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal–silicate fractionation. An identical isotopic composition might result from core–mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: This study reports Mo isotopic compositions for fifty-two Palaeozoic granitic rocks with contrasting source affinities (A-, I- and S-type) from the Lachlan Fold Belt (LFB) and the New England Batholith (NEB), both in SE Australia, and three compositionally zoned plutons (Loch Doon, Criffell, and Fleet) located in the Southern Uplands of Scotland. The results show relatively large variations in δ98Mo for igneous rocks ranging from −1.73‰ to 0.59‰ with significant overlaps between different types. No relationships between δ98Mo and δ18O or ASI (Alumina Saturation Index) are observed, indicating that Mo isotopes do not clearly distinguish igneous vs. sedimentary source types. Instead, effects of igneous processes, source mixing, regional geology, as well as hydrothermal activity control the Mo isotope compositions in these granites. It is found that Mo is mainly accommodated in biotite and to a lesser extent in hornblende. Hornblende and Fe3+-rich minerals may preferentially incorporate light isotopes, as reflected by negative correlations between δ98Mo and K/Rb and [Fe2O3]. There is a positive correlation between initial 87Sr/86Sr and δ98Mo in I-type granitic rocks, reflecting the admixing of material from isotopically distinct sources. Granitic rocks from Scotland and Australia display strikingly similar curvilinear trends in δ98Mo vs. initial 87Sr/86Sr despite the differing regional geology. Localized hydrothermal effects can result in low δ98Mo in granite, as seen in three samples from Loch Doon and Criffell which have anomalously light δ98Mo of 〈−1‰. Based on this study, an estimate of δ98Mo = 0.14 ± 0.07‰ (95% s.e.) for the Phanerozoic upper crust is proposed. This is slightly heavier than basalts indicating an isotopically light lower crust and/or a systematic change to the crust resulting from subduction of isotopically light dehydrated slab and/or pelagic sediment over time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-09
    Description: Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10 Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10 Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12 Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the Nördlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-30
    Description: Global Nd–Hf isotope systematics can be mainly described with two linear arrays, the global silicate Earth array (“the terrestrial array”) and the global ferromanganese crust and nodule array (”the seawater array”). The offset between these two arrays provides evidence for the sources and mechanisms by which these elements are added to ocean water. However, the reason for this offset is under debate, with the two preferred hypotheses being (i) incongruent release of Hf during continental weathering and (ii) hydrothermal contribution of Hf to the seawater budget. Here we present new Nd and Hf isotope data on glacio-marine core-top sediments from around the perimeter of the Antarctic continent. The results range from εHf = − 30.0 to εHf = + 3.9 and εNd = − 21.3 to εNd = + 0.9, reflecting the large range of basement ages and lithologies around the Antarctic continent. In Nd–Hf isotope space, they confirm the systematic correlations found in rocks from other parts around the world and provide valuable insights into the previously underrepresented group of sediments with very old provenance. In this paper we revisit the cause for the offset of the seawater array from the terrestrial array using simple mass balance considerations. We use these calculations to test to what degree the seawater array could be a product of preferential weathering of “non-zircon portions” of the upper continental crust, implying retention of zircons in the solid residue of weathering. Lutetium–Hf and Sm–Nd evolution and mixing calculations show that the global seawater array can be generated with continental sources only. On the other hand, a predominantly hydrothermal origin of Hf in the ocean is not possible because the seawater Hf isotopic composition is significantly less radiogenic than hydrothermal sources, and requires a minimum fraction of 50% continental Hf. While hydrothermal sources may contribute some Hf to seawater, continental contributions are required to balance the budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: It is well established that Hf weathers incongruently such that the isotopic compositions in seawater are offset from those of Nd relative to the correlation defined by bulk lithologies of the continental crust. Here we study this process in detail with new records of the seasonal variability of isotope compositions and concentrations of Hf and Nd in four Swiss rivers. The water has been filtered at a pore size of 0.45 mu m and therefore represents the truly dissolved and the colloidal pool of both elements. The studied rivers drain metamorphic (gneissic) or sedimentary (mixed carbonate/siliciclastic) lithologies. The dissolved isotope data are compared to the isotope compositions and concentrations of the suspended load and different fractions of the actual source rocks in the respective catchments, as well as to concomitant changes in the aqueous chemistry of the major elements. Dissolved Nd concentrations span similar ranges for all rivers, whereas Hf concentrations are one order of magnitude lower in the rivers that drain gneissic catchments compared to those draining sedimentary rocks. This primarily results from the retention of most of the Hf in the gneissic zircons, as indicated by the Hf budget of the gneisses, whereas Hf in the sedimentary catchments is readily weathered from fine detrital silicates. Large differences are found between the dissolved Hf isotope compositions of the rivers and those of the suspended load and the source rocks, consistent with the release of Hf from a radiogenic rock fraction during weathering. In the metamorphic catchments this primarily reflects that fact that zircons are barely accessible for weathering. The zircon-free portion of the rocks appears to weather congruently as the riverine Hf isotope compositions are similar to the zircon-free portion of the gneisses, rather than being distinctly more radiogenic. Leaching experiments performed to understand the riverine Hf budget in the sedimentary catchments reveal that the carbonate fraction of the sedimentary rocks is extremely radiogenic, yielding Hf isotope compositions up to epsilon(Hf) of + 208. However, the Hf concentrations in the carbonate fractions are too low to dominate the riverine Hf budget, which is instead controlled by the weathering of detrital silicate minerals. Two of the catchments, a metamorphic and a sedimentary one, show relatively systematic changes towards more radiogenic dissolved Hf isotope compositions as discharge increases. This suggests that continental runoff conditions could be a relevant parameter for the control of the seawater Hf isotope composition, whereby more congruent weathering is achieved during low discharge when Hf is increasingly derived from weathering-resistant unradiogenic minerals
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: We have retrieved radiogenic hafnium (Hf) isotope compositions (ɛHf) from authigenic Fe–Mn oxyhydroxides of deep northwest Atlantic sediments deposited over the past 26 ka to investigate the oceanic evidence of changes in dissolved weathering inputs from NE America during the last deglaciation. The extraction of seawater-derived Hf isotopic compositions from Fe–Mn oxyhydroxides is not a standard procedure. Comparisons between the Al/Hf ratios and Hf isotopic compositions of the chemically extracted authigenic phase on the one hand, and those of the corresponding detrital fractions on the other, provide evidence that the composition of past seawater has been reliably obtained for most sampled depths with our leaching procedures. This is endorsed most strongly by data for a sediment core from 4250 m water depth at the deeper Blake Ridge, for which consistent replicates were produced throughout. The Hf isotopic composition of the most recent sample in this core also closely matches that of nearby present day central North Atlantic seawater. Comparison with previously published seawater Nd and Pb isotope compositions obtained on the same cores shows that both Hf and Pb were released incongruently during incipient chemical weathering, but responded differently to the deglacial retreat of the Laurentide Ice Sheet. Hafnium was released more congruently during peak glacial conditions of the Last Glacial Maximum (LGM) and changed to typical incongruent interglacial ɛHf signatures either during or shortly after the LGM. This indicates that some zircon-derived Hf was released to seawater during the LGM. Conversely, there is no clear evidence for an increase in the influence of weathering of Lu-rich mineral phases during deglaciation, possibly since relatively unradiogenic Hf contributions from feldspar weathering were superimposed. While the authigenic Pb isotope signal in the same marine sediment samples traced peak chemical weathering rates on continental North America during the transition to the Holocene a similar incongruent excursion is notably absent in the Hf isotope record. The early change towards more radiogenic ɛHf in relation to the LGM may provide direct evidence for the transition from a cold-based to a warm-based Laurentide Ice Sheet on the Atlantic sector of North America.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-11
    Description: The extraction of a deepwater radiogenic isotope signal from marine sediments is a powerful, though under-exploited, tool for the characterisation of past climates and modes of ocean circulation. The radiogenic and radioactive isotope compositions (Nd, Pb, Th) of ambient deepwater are stored in authigenic Fe–Mn oxyhydroxide coatings in marine sediments, but the unambiguous separation of the isotopic signal in this phase from other sedimentary components is difficult and measures are needed to ensure its seawater origin. Here the extracted Fe–Mn oxyhydroxide phase is investigated geochemically and isotopically in order to constrain the potential and the limitations of the reconstruction of deepwater radiogenic isotope compositions from marine sediments. Our results show that the isotope compositions of elements such as Sr and Os obtained from the Fe–Mn oxyhydroxide fraction are easily disturbed by detrital contributions originating from the extraction process, whereas the seawater isotope compositions of Nd, Pb and Th can be reliably extracted from marine sediments in the North Atlantic. The main reason is that the Nd, Pb and Th concentrations in the detrital phase of pelagic sediments are much lower than in the Fe–Mn oxyhydroxide fractions. This is reflected in Al/Nd, Al/Pb and Al/Th ratios of the Fe–Mn oxyhydroxide fractions, which are as low as or even lower than those of hydrogenetic ferromanganese crusts. Mass balance calculations illustrate that the use of the 87Sr/86Sr isotope composition to confirm the seawater origin of the extracted Nd, Pb and Th isotope signals is misleading. Even though the 87Sr/86Sr in the Fe–Mn oxyhydroxide fractions is often higher than the seawater Sr isotope composition, the corresponding detrital contribution does not translate into altered seawater Nd, Pb and Th isotope compositions due to mass balance constraints. Overall the rare earth element patterns, elemental ratios, as well as the mass balance calculations presented here highlight the potential of using authigenic Fe–Mn oxyhydroxide coatings as paleoceanographic archives for the analysis of past seawater Nd, Pb and Th isotope compositions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...