ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • Geophysical Research Abstracts Vol. 14, EGU2012-1963-1  (1)
  • Molecular Diversity Preservation International  (1)
  • 1
  • 2
    Publication Date: 2013-03-25
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-12
    Description: The focus of this research has been on detecting changes in lake areas, vegetation, land surface temperatures, and the area covered by snow, using data from remote sensing. The study area covers the main (central) part of the Lena River catchment in the Yakutia region of Siberia (Russia), extending from east of Yakutsk to the central Siberian Plateau, and from the southern Lena River to north of the Vilyui River. Approximately 90% of the area is underlain by continuous permafrost. Remote sensing products were used to analyze changes in water bodies, land surface temperature (LST), and leaf area index (LAI), as well as the occurrence and extent of forest fires, and the area and duration of snow cover. The remote sensing analyses (for LST, snow cover, LAI, and fire) were based on MODIS–derived NASA products (250–1000 m) for 2000 to 2011. Changes in water bodies were calculated from two mosaics of (USGS) Landsat (30 m) satellite images from 2002 and 2009. Within the study area's 315,000 km2 the total area covered by lakes increased by 17.9% between 2002 and 2009, but this increase varied in different parts of the study area, ranging between 11% and 42%. The land surface temperatures showed a consistent warming trend, with an average increase of about 0.12 °C/year. The average rate of warming during the April–May transition period was 0.17 °C/year and 0.19 °C/year in the September–October period, but ranged up to 0.49 °C/year during September–October. Regional differences in the rates of land surface temperature change, and possible reasons for the temperature changes, are discussed with respect to changes in the land cover. Our analysis of a broad spectrum of variables over the study area suggests that the spring warming trend is very likely to be due to changes in the area covered by snow. The warming trend observed in fall does not, however, appear to be directly related to any changes in the area of snow cover, or to the atmospheric conditions, or to the proportion of the land surface that is covered by water (i.e., to wetting and drying). Supplementary data (original data, digitized version of the maps, metadata) are archived under PANGAEA (http://dx.doi.org/10.1594/PANGAEA.855124).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geophysical Research Abstracts Vol. 14, EGU2012-1963-1
    In:  EPIC3EGU General Assembly 2012, Vienna, Geophysical Research Abstracts Vol. 14, EGU2012-1963-1
    Publication Date: 2019-07-16
    Description: Sub-grid and small scale processes occur in various ecosystems and landscapes (e.g., periglacial ecosystems, peatlands and vegetation patterns). These local heterogeneities are often important or even fundamental to better understand general and large scale properties of the system, but they are either ignored or poorly parameterized in regional and global models. Because of their small scale, the underlying generating processes can be well explained and resolved only by local mechanistic models, which, on the other hand, fail to consider the regional or global influences of those features. A challenging problem is then how to deal with these interactions across different spatial scales, and how to improve our understanding of the role played by local soil heterogeneities in the climate system. This is of particular interest in the northern peatlands, because of the huge amount of carbon stored in these regions. Land-atmosphere greenhouse gas fluxes vary dramatically within these environments. Therefore, to correctly estimate the fluxes a description of the small scale soil variability is needed. Applications of statistical physics methods could provide useful tools to upscale local features of the landscape, relating them to large-scale properties. To test this approach we considered a case study: the polygonal tundra. Cryogenic polygons, consisting mainly of elevated dry rims and wet low centers, pattern the terrain of many subartic regions and are generated by complex crack-and-growth processes. Methane, carbon dioxide and water vapor fluxes vary largely within the environment, as an effect of the small scale processes that characterize the landscape. It is then essential to consider the local heterogeneous behavior of the system components, such as the water table level inside the polygon wet centers, or the depth at which frozen soil thaws. We developed a stochastic model for this environment using Poisson-Voronoi diagrams, which are able to upscale statistical large scale properties of the system taking into account the main processes within the single polygons. We then compare the results with available recent field studies and demonstrate that the model captures the main statistical characteristics of the landscape and describes its dynamical behavior under climatic forcings (e.g., precipitation and evapotranspiration). In particular, we model and analyze water table dynamics, which directly influences greenhouse gas emissions and changes in the system. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi-Deleaunay graph.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...