ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3European Geisciences Union General Assembly 2019, Vienna, Austria, 2019-04-07-2019-04-12Vienna, EGU
    Publication Date: 2019-06-11
    Description: Aerosol strongly affect the radiation balance, especially in the Arctic where climate change is significantly faster compared to lower latitudes. The interaction between aerosol and radiation can be either direct (scattering and absorption) or indirect (aerosol serving as cloud condensation nuclei and ice nucleating particles). Aerosol optical properties can be provided by Lidar (Light Detection and Ranging) systems with high spatial and temporal resolution. In this study, we utilize data from a ground-based Lidar system located in Ny-Ålesund, Spitsbergen and an air-borne system installed onboard the research aircraft Polar5. Our focus is on a rare event of elevated aerosol layers, which persistently appeared over two different parts of the European Arctic during PAMARCMiP (Polar Air-borne Measurements and Arctic Regional Climate Model Simulation Project) campaign in spring 2018. Results show that the detected layers exhibit similar optical properties, namely aerosol backscatter coefficient, which is indicative of aerosol abundance and aerosol depolarization ratio, which is an indicator of the aerosol shape. The main hypothesis is that although the existence of those layers is rare, they impact on the radiation budget of the Arctic. In the next steps of our research, we will investigate the occurrence of similar aerosol layers in the springtime of previous years using long-term measurements from the Lidar system located in Ny-Ålesund. Our goal is to assess the effect of different aerosol layers on the surface radiation budget and gain a better understanding of their role in the amplified Arctic climate change, utilizing radiation measurements from the Ny-Ålesund BSRN (Baseline Surface Radiation Network) station.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-25
    Description: Permafrost around the Arctic is warming and thawing. We report data from the high arctic research site Bayelva (78.551N; 11.571E) located close to Ny-Alesund. Data on meteorology, energy balance components and subsur- face observations have been made for the last 20 years (1998-2017; Boike et al. 2017). This study site is underlain by permafrost with current mean permafrost temperature of -2.8◦C and is seasonally snow-covered from October to May. Mean annual, summer and winter soil temperature data at all depths have beenrising over the period of record with a warming trend of 0.18±0.07◦C/year in active layer and top of permafrost. However, interannual to sub-decadal variability is evident in the data and results mostly from differences of theclimate during the winter months. The modeled active layer thickness using the Stefan equation has increasedcontinuously from about 1m in 1998 and is estimated to have surpassed 2 m in 2016. The data show that snow ablation has started earlier, thus extending the snow free season, potentially re-sulting in more time for soil warming and deepening of active layer. The snow cover onset and ablation, aswell as the thermo insulation properties of the snow cover, will be investigated together with active layer and permafrost variables (temperature, volumetric water content) for further understanding of the observed warming and deepening. Boike, J., Juszak, I., Lange, S., Chadburn, S., Burke, E., Overduin, P. P., Roth, K., Ippisch, O., Bornemann, N., Stern, L., Gouttevin, I., Hauber, E., and Westermann, S.: A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth Syst. Sci. Data, 10, 355-390, https://doi.org/10.5194/essd-10-355-2018, 2018.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-26
    Description: The Arctic is very susceptible to climate change and thus is warming much faster than the rest of the world. Clouds influence terrestrial and solar radiative fluxes and thereby impact the amplified Arctic warming. The partitioning of thermodynamic phases (i.e., ice crystals and water droplets) within mixed-phase clouds (MPCs) especially influences their radiative properties. However, the processes responsible for ice crystal forma- tion remain only partially characterized. In particular, so-called secondary ice production (SIP) processes, which create supplementary ice crystals from primary ice crystals and the environmental conditions that they occur in, are poorly understood. The microphysical properties of Arctic MPCs were measured during the Ny-Ålesund AeroSol Cloud ExperimENT (NASCENT) campaign to obtain a better understanding of the atmospheric con- ditions favorable for the occurrence of SIP processes. To this aim, the in situ cloud microphysical properties retrieved by a holographic cloud imager mounted on a tethered balloon system were complemented by ground- based remote sensing and ice-nucleating particle measurements. During the 6 d investigated in this study, SIP occurred during about 40 % of the in-cloud measurements, and high SIP events with number concentrations larger than 10 L−1 of small pristine ice crystals occurred in 4 % of the in-cloud measurements. This demonstrates the role of SIP for Arctic MPCs. The highest concentrations of small pristine ice crystals were produced at temperatures between −5 and −3 ◦C and were related to the occurrence of supercooled large droplets freezing upon collision with ice crystals. This suggests that a large fraction of ice crystals in Arctic MPCs are produced via the droplet-shattering mechanism. From evaluating the ice crystal images, we could identify ice–ice collision as a second SIP mechanism that dominated when fragile ice crystals were observed. Moreover, SIP occurred over a large temperature range and was observed in up to 80 % of the measurements down to −24 ◦C due to the occurrence of ice–ice collisions. This emphasizes the importance of SIP at temperatures below −8 ◦C, which are currently not accounted for in most numerical weather models. Although ice-nucleating particles may be necessary for the initial freezing of water droplets, the ice crystal number concentration is frequently determined by secondary production mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...