ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (2)
  • Instituto de Ciencias del Mar - CSIC  (1)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    Instituto de Ciencias del Mar - CSIC
    In:  Scientia Marina, 65 (Suppl. 1). pp. 41-49.
    Publication Date: 2015-11-24
    Description: During the cruise F/S Poseidon 212/3 (September 30-October 8, 1995) determination of carbon system variables was carried out over the section of La Palma-La Graciosa and at the ESTOC station in the Canary Island area. Total alkalinity and pH in the total scale at 25 degreesC were determined at 24 stations from surface to bottom. In this area, the presence of different water masses can be traced by the carbon system variables. NACW is defined by a strong gradient of A(T) and pH from 150 to 750 m. MW is characterised by high values of A(T) and pH between 1000 to 1200 in and AAIW signals are found at around 900 in in the strait between Gran Canaria and Fuerteventura with low A(T), low pH and a maximum of fCO(2). Assuming an atmospheric mean value of fCO(2) of 360 mu atm and an average surface value of 393 +/-7 mu atm, we can conclude that during this cruise this oceanic area tends to release CO2 into the atmosphere, acting as a weak source with a carbon flux towards the atmosphere of +8.0 +/-1.8 mmol.m(-2)d(-1). The saturation levels in the Canary Island area have been found to be higher than 3600 m for calcite and 2700 in for aragonite. The inorganic carbon/organic carbon ratio (IC/OC) varies from 0.07 at 300 m to 0.5 at 3000 m. The IC/OC ratio shows that about a 34% increase in the C-T of the deep water is contributed by the inorganic CaCO3 dissolution. The IC at 300 in is around 7 mu mol kg(-1), increasing with depth to 37.5 mu mol kg(-1) at 3700 m.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 2831-2846, doi:10.5194/bg-9-2831-2012.
    Description: We used 5-yr concomitant data of tracer distribution from the BATS (Bermuda Time-series Study) and ESTOC (European Station for Time-Series in the Ocean, Canary Islands) sites to build a 1-D tracer model conservation including horizontal advection, and then compute net production and shallow remineralization rates for both sites. Our main goal was to verify if differences in these rates are consistent with the lower export rates of particulate organic carbon observed at ESTOC. Net production rates computed below the mixed layer to 110 m from April to December for oxygen, dissolved inorganic carbon and nitrate at BATS (1.34±0.79 mol O2 m−2, −1.73±0.52 mol C m−2 and −125±36 mmol N m−2) were slightly higher for oxygen and carbon compared to ESTOC (1.03±0.62 mol O2 m−2, −1.42±0.30 mol C m−2 and −213±56 mmol N m−2), although the differences were not statistically significant. Shallow remineralization rates between 110 and 250 m computed at ESTOC (−3.9±1.0 mol O2 m−2, 1.53±0.43 mol C m−2 and 38±155 mmol N m−2) were statistically higher for oxygen compared to BATS (−1.81±0.37 mol O2 m−2, 1.52±0.30 mol C m−2 and 147±43 mmol N m−2). The lateral advective flux divergence of tracers, which was more significant at ESTOC, was responsible for the differences in estimated oxygen remineralization rates between both stations. According to these results, the differences in net production and shallow remineralization cannot fully explain the differences in the flux of sinking organic matter observed between both stations, suggesting an additional consumption of non-sinking organic matter at ESTOC.
    Description: B. Mourino was supported by the Ramon y Cajal program from the Spanish Minister of Science and Technology. Funding for this study was provided by the Xunta de Galicia under the research project VARITROP (09MDS001312PR, PI B. Mourino) and by the Ministerio de Ciencia e Innovation MOMAC project (CTM2008-05914/MAR).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 607-627, doi:10.5194/bg-10-607-2013.
    Description: The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.
    Description: U. Schuster has been supported by EU grants IP 511176-2 (CARBOOCEAN), 212196 (COCOS), and 264879 (CARBOCHANGE), and UK NERC grant NE/H017046/1 (UKOARP). G. A. McKinley and A. Fay thank NASA for support (NNX08AR68G, NNX11AF53G). P. Landsch¨utzer has been supported by EU grant 238366 (GREENCYCLESII). N. Metzl acknowledges the French national funding program LEFE/INSU. Support for N. Gruber has been provided by EU grants 264879 (CARBOCHANGE) and 283080 (GEO-CARBON) S. Doney acknowledges support from NOAA (NOAA-NA07OAR4310098). T. Takahashi is supported by NOAA (NAO80AR4320754).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...