ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3EGU General Assembly 2021, online, 2021-04-19-2021-04-30Lacustrine oxygen isotope records from biogenic silica (δ18OBSi) – a global compilation and review, Göttingen, Copernicus Publications
    Publication Date: 2021-06-20
    Description: Isotope records are crucial for proxy-model comparison in paleoclimatology because of their advantage of being directly comparable with isotope-enabled paleoclimate model outputs. Oxygen isotopes (δ18O) are commonly measured on carbonates (i.e. ostracods, authigenic carbonates) and biogenic silica (mainly diatoms). Oxygen isotopes in lacustrine carbonates (δ18OCaCO3) have been studied extensively for several decades, yet they are subject to complex species-dependent fractionation processes and not available globally. Lacustrine oxygen isotope records from biogenic silica (δ18OBSi), on the other hand, likely do not display species-dependent fractionation effects (or only very minor) and offer insight even in data-sparse regions devoid of carbonates, such as the Arctic. To date, more than 70 lacustrine δ18OBSi records have been published. These case studies have been complemented with additional efforts addressing climatic and hydrological backgrounds, laboratory techniques and possible species-dependent fractionation as well as deposition and dissolution effects. Here, we present the first comprehensive review and global compilation of lacustrine δ18OBSi records, with explicit regard to their individual lake basin parameters. With this work, we aim at contributing to bridging the gap between modelling and isotope geochemistry approaches regarding terrestrial archives in paleoclimatology. Departing from hitherto prevalent case studies, we assess what we can learn from lacustrine δ18OBSi records globally, considering lake basin characteristics, spatial and temporal coverage as well as hydrological background information. This improves both the usability of δ18OBSi for proxy-model comparison and our understanding of the general constraints for interpreting lacustrine δ18OBSi records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-25
    Description: Ice wedges in the Yana Highlands of interior Yakutia – the most continental region of the Northern Hemisphere – were investigated to elucidate changes in winter climate and continentality that have taken place since the Middle Pleistocene. The Batagay megaslump exposes ice wedges and composite wedges that were sampled from three cryostratigraphic units: the lower ice complex of likely pre-Marine Isotope Stage (MIS) 6 age, the upper ice complex (Yedoma) and the upper sand unit (both MIS 3 to 2). A terrace of the nearby Adycha River provides a Late Holocene (MIS 1) ice wedge that serves as a modern reference for interpretation. The stable-isotope composition of ice wedges in the MIS 3 upper ice complex at Batagay is more depleted (mean δ18O about −35 ‰) than those from 17 other ice-wedge study sites across coastal and central Yakutia. This observation points to lower winter temperatures and therefore higher continentality in the Yana Highlands during MIS 3. Likewise, more depleted isotope values are found in Holocene wedge ice (mean δ18O about −29 ‰) compared to other sites in Yakutia. Ice-wedge isotopic signatures of the lower ice complex (mean δ18O about −33 ‰) and of the MIS 3–2 upper sand unit (mean δ18O from about −33 ‰ to −30 ‰) are less distinctive regionally. The latter unit preserves traces of fast formation in rapidly accumulating sand sheets and of post-depositional isotopic fractionation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3The Cryosphere, Copernicus Publications, 9(2), pp. 737-752, ISSN: 1994-0424
    Publication Date: 2022-08-12
    Description: Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km³. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-19
    Description: Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times 〈100 years. For mid- to high-latitude (〉45°N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-30
    Description: 〈jats:p〉Abstract. Stable water isotopes stored in snow, firn and ice are used to reconstruct climatic parameters. The imprint of these parameters at the snow surface and their preservation in the upper snowpack are determined by a number of processes influencing the recording of the environmental signal. Here, we present a dataset of approximately 3800 snow samples analysed for their stable water isotope composition, which were obtained during the summer season next to the deep drilling site of the East Greenland Ice Core Project in northeast Greenland (75.635411° N, 36.000250° W). Sampling was carried out every third day between 14 May and 3 August 2018 along a 39 m long transect. Three depth intervals in the top 10 cm were sampled at 30 positions with a higher resolution closer to the surface (0–1 and 1–4 cm depth vs. 4–10 cm). The sample analysis was carried out at two renowned stable water isotope laboratories that produced isotope data with the overall highest uncertainty of 0.09 ‰ for δ18O and 0.8 ‰ for δD. This unique dataset shows the strongest δ18O variability closest to the surface, damped and delayed variations in the lowest layer, and a trend towards increasing homogeneity towards the end of the season, especially in the deepest layer. Additional information on the snow height and its temporal changes suggests a non-uniform spatial imprint of the seasonal climatic information in this area, potentially following the stratigraphic noise of the surface. The data can be used to study the relation between snow height (changes) and the imprint and preservation of the isotopic composition at a site with 10–14 cm w.e. yr−1 accumulation. The high-temporal-resolution sampling allows additional analyses on (post-)depositional processes, such as vapour–snow exchange. The data can be accessed at https://doi.org/10.1594/PANGAEA.956626 (Zuhr et al., 2023a). 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...