ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-14
    Description: Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1° × 1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the increasing use of wet flue gas desulfurization (WFGD) in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-20
    Description: We introduced a sediment-induced light attenuation algorithm into a biogeochemical model of the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. A fully coupled ocean–atmospheric–sediment–biogeochemical simulation was carried out to assess the impact of sediment-induced light attenuation on primary production in the northern Gulf of Mexico during the passage of Hurricane Gustav in 2008. When compared with model results without sediment-induced light attenuation, our new model showed a better agreement with satellite data on both the magnitude of nearshore chlorophyll concentration and the spatial distribution of offshore bloom. When Hurricane Gustav approached, resuspended sediment shifted the inner shelf ecosystem from a nutrient-limited one to a light-limited one. Only 1 week after Hurricane Gustav's landfall, accumulated nutrients and a favorable optical environment induced a posthurricane algal bloom in the top 20 m of the water column, while the productivity in the lower water column was still light-limited due to slow-settling sediment. Corresponding with the elevated offshore NO3 flux (38.71 mmol N m−1 s−1) and decreased chlorophyll flux (43.10 mg m−1 s−1), the outer shelf posthurricane bloom should have resulted from the cross-shelf nutrient supply instead of the lateral dispersed chlorophyll. Sensitivity tests indicated that sediment light attenuation efficiency affected primary production when sediment concentration was moderately high. Model uncertainties due to colored dissolved organic matter and parameterization of sediment-induced light attenuation are also discussed.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-08
    Description: A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient input from major rivers. A 7 yr model hindcast (2004–2010) was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in-situ observations including coastal sea-level, ocean temperature, salinity, and nutrient concentration. The model hindcast revealed clear seasonality in nutrient, phytoplankton and zooplankton distributions in the GoM. An Empirical Orthogonal Function analysis indicated a phase-locked pattern among nutrient, phytoplankton and zooplankton concentrations. The GoM shelf nutrient budget was also quantified, revealing that on an annual basis ~80% of nutrient input was denitrified on the shelf and ~17% was exported to the deep ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-27
    Description: A three-dimensional coupled physical–biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004–2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr−1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-09-01
    Description: Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1°×1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289.11 t), Henan (241.45 t), Jiangsu (175.44 t), Anhui (168.89 t), and Hubei (163.96 t). Between 2000 and 2007, provinces always rank at the top five largest Hg, As, and Se emission sources are: Shandong, Hebei, Shanxi, Henan, and Jiangsu, most of which are located in the east and are traditional industry-based or economically energy intensive areas in China. Notably, Hg, As, and Se emissions from coal combustion in China begin to grow at a more moderate pace since 2005. Emissions from coal-fired power plants sector began to decrease though the coal use had been increasing steadily, which can be mainly attributed to the more and more installation of WFGD in power plants, thus the further research and control orientations of importance for these hazardous trace elements should be the industrial sector.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-12
    Description: A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nitrogen input from major rivers. A 7 yr model hindcast (2004–2010) was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in situ observations including coastal sea level, ocean temperature, salinity, and dissolved inorganic nitrogen (DIN) concentration. The model hindcast revealed clear seasonality in DIN, phytoplankton and zooplankton distributions in the GoM. An empirical orthogonal function analysis indicated a phase-locked pattern among DIN, phytoplankton and zooplankton concentrations. The GoM shelf nitrogen budget was also quantified, revealing that on an annual basis the DIN input is largely balanced by the removal through denitrification (an equivalent of ~ 80% of DIN input) and offshore exports to the deep ocean (an equivalent of ~ 17% of DIN input).
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...