ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • 1
    Publication Date: 2017-11-06
    Description: A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20–30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-23
    Description: A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, with implicated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here we adapted the MAIDEN ecophysiological forest model to better consider important processes for boreal tree species, such as non-linear acclimation of photosynthesis to temperature changes, canopy development as a function of previous year climate variables influencing bud formation, and temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring-width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the full spectrum of the annual ring width variability and 20–30 % of its high frequency component. The positive effect on stem growth due to climate warming in the last decades is well captured by the model. In addition, we illustrate the improvement achieved with each introduced model adaptation and compare the model results with those of linear response functions. This shows that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis), and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...