ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (36)
  • 1
    Publication Date: 2013-12-17
    Description: We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-03
    Description: In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Niño warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-18
    Description: Lightning is one of the major natural sources of NOx in the atmosphere. A suite of time slice experiments using a stratosphere-resolving configuration of the Unified Model (UM), containing the United Kingdom Chemistry and Aerosols sub-model (UKCA), has been performed to investigate the impact of climate change on emissions of NOx from lightning (LNOx) and to highlight its critical impacts on photochemical ozone production and the oxidising capacity of the troposphere. Two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5) are explored. LNOx is simulated to increase in a year-2100 climate by 33% (RCP4.5) and 78% (RCP8.5), primarily as a result of increases in the depth of convection. The total tropospheric chemical odd oxygen production (P(Ox)) increases linearly with increases in total LNOx and consequently, tropospheric ozone burdens of 29 ± 4 Tg(O3) (RCP4.5) and 46 ± 4 Tg(O3) (RCP8.5) are calculated here. By prescribing a uniform surface boundary concentration for methane in these simulations, methane-driven feedbacks are essentially neglected. A simple estimate of the contribution of the feedback reduces the increase in ozone burden to 24 and 33 Tg(O3), respectively. We thus show that, through changes in LNOx, the effects of climate change counteract the simulated mitigation of the ozone burden, which results from reductions in ozone precursor emissions as part of air quality controls projected in the RCP scenarios. Without the driver of increased LNOx, our simulations suggest that the net effect of climate change would be to lower free tropospheric ozone. In addition, we identify large climate-change-induced enhancements in the concentration of the hydroxyl radical (OH) in the tropical upper troposphere (UT), particularly over the Maritime Continent, primarily as a consequence of greater LNOx. The OH enhancement in the tropics increases oxidation of both methane (with feedbacks onto chemistry and climate) and very short-lived substances (VSLS) (with implications for stratospheric ozone depletion). We emphasise that it is important to improve our understanding of LNOx in order to gain confidence in model projections of composition change under future climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-22
    Description: The correlation between measured tropospheric ozone (O3) and carbon monoxide (CO) has been used extensively in tropospheric chemistry studies to explore the photochemical characteristics of different regions and to evaluate the ability of models to capture these characteristics. Here, we present the first study that uses multi-year, global, vertically resolved, simultaneous and collocated O3 and CO satellite (Tropospheric Emission Spectrometer) measurements, to determine this correlation in the middle/lower free troposphere for two different seasons, and to evaluate two chemistry-climate models. We find results that are fairly robust across different years, altitudes and timescales considered, which indicates that the correlation maps presented here could be used in future model evaluations. The highest positive correlations (around 0.8) are found in the northern Pacific during summer, which is a common feature in the observations and the G-PUCCINI model. We make quantitative comparisons between the models using a single-figure metric (C), which we define as the correlation coefficient between the modeled and the observed O3-CO correlations for different regions of the globe. On a global scale, the G-PUCCINI model shows a good performance in the summer (C=0.71) and a satisfactory performance in the winter (C=0.52). It captures midlatitude features very well, especially in the summer, whereas the performance in regions like South America or Central Africa is weaker. The UKCA model (C=0.46/0.15 for July–August/December–January on a global scale) performs better in certain regions, such as the tropics in winter, and it captures some of the broad characteristics of summer extratropical correlations, but it systematically underestimates the O3-CO correlations over much of the globe. It is noteworthy that the correlations look very different in the two models, even though the ozone distributions are similar. This demonstrates that this technique provides a powerful global constraint for understanding modeled tropospheric chemical processes. We investigated the sources of the correlations by performing a series of sensitivity experiments. In these, the sign of the correlation is, in most cases, insensitive to removing different individual emissions, but its magnitude changes downwind of emission regions when applying such perturbations. Interestingly, we find that the O3-CO correlation does not solely reflect the strength of O3 photochemical production, as often assumed by earlier studies, but is more complicated and may reflect a mixture of different processes such as transport.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-01
    Description: Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4–6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6–8 years, depending on Cly levels.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-04
    Description: We report results from two pairs of chemistry-climate model simulations using the same climate model but different chemical perturbations. In each pair of experiments an ozone change was triggered by a simple change in the chemistry. One pair of model experiments looked at the impact of polar stratospheric clouds (PSCs) and the other pair at the impact of short-lived halogenated species on composition and circulation. The model response is complex with both positive and negative changes in ozone concentration, depending on location. These changes result from coupling between composition, temperature and circulation. Even though the causes of the modelled ozone changes are different, the high latitude Southern Hemisphere response in the lower stratosphere is similar. In both pairs of experiments the high-latitude circulation changes, as evidenced by N2O differences, are suggesting a slightly longer-lasting/stronger stratospheric descent in runs with higher ozone destruction (a manifestation of a seasonal shift in the circulation). We contrast the idealised model behaviour with interannual variability in ozone and N2O as observed by the MIPAS instrument on ENVISAT, highlighting similarities of the modelled climate equilibrium changes to the year 2006–2007 in observations. We conclude that the climate system can respond quite sensitively in its seasonal evolution to small chemical perturbations, that circulation adjustments seen in the model can occur in reality, and that coupled chemistry-climate models allow a better assessment of future ozone and climate change than recent CMIP-type models with prescribed ozone fields.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2013-02-07
    Description: Atmospheric chemistry is driven by photolytic reactions, making their modelling a crucial component of atmospheric models. We describe the implementation and validation of Fast-JX, a state of the art model of interactive photolysis, into the MetUM chemistry-climate model. This allows for interactive photolysis rates to be calculated in the troposphere and augments the calculation of the rates in the stratosphere by accounting for clouds and aerosols in addition to ozone. In order to demonstrate the effectiveness of this new photolysis scheme we employ new methods of validating the model, including techniques for sampling the model to compare to flight track and satellite data.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-05
    Description: A stratosphere-resolving configuration of the Met Office's Unified Model (UM) with the United Kingdom Chemistry and Aerosols (UKCA) scheme is used to investigate the atmospheric response to changes in (a) greenhouse gases and climate, (b) ozone-depleting substances (ODSs) and (c) non-methane ozone precursor emissions. A suite of time-slice experiments show the separate, as well as pairwise, impacts of these perturbations between the years 2000 and 2100. Sensitivity to uncertainties in future greenhouse gases and aerosols is explored through the use of the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The results highlight an important role for the stratosphere in determining the annual mean tropospheric ozone response, primarily through stratosphere–troposphere exchange of ozone (STE). Under both climate change and reductions in ODSs, increases in STE offset decreases in net chemical production, leading to overall increases in the tropospheric ozone burden. This opposes the effects of projected decreases in ozone precursors through measures to improve air quality, which act to reduce the ozone burden. The global tropospheric lifetime of ozone (τO3) does not change significantly under climate change at RCP4.5, but it decreases at RCP8.5. This opposes the increases in τO3 simulated under reductions in both ODSs and ozone precursor emissions. The additivity of the changes in ozone is examined by comparing the sum of the responses in the single-forcing experiments to those from equivalent combined-forcing experiments. Whilst the ozone responses to most forcing combinations are found to be approximately additive, non-additive changes are found in both the stratosphere and troposphere when a large climate forcing (RCP8.5) is combined with the effects of ODSs.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-14
    Description: Naturally produced very short-lived substances (VSLS), like bromocarbons, account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical increase in VSLS on ozone and how that impact depends on the background concentrations of chlorine and bromine. Our model experiments indicate that for a ~5 ppt increase in Bry from VSLS, the local ozone loss in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone loss in the Northern Hemisphere (NH) is smaller (4–6%). There is more ozone loss following an increase in VSLS burden under a high stratospheric chlorine background than under a low chlorine background indicating the importance of the inter-halogen reactions. For example, the rate of decline of the stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~3 ppb (present day) compared with Cly of ~0.8 ppb (apre-industrial or projected future situation). Although bromine plays an important role in destroying ozone, inorganic chlorine is the dominant halogen compound. Even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will be dominated by the recovery of anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recover date could be delayed by approximately 7 years.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...