ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-06
    Description: We present surface mass balance simulations of the Southern Patagonia Icefield (SPI) driven by downscaled reanalysis data. The simulations were evaluated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the icefield for spring 2004. The high measured accumulation of snow of up to 15.4 m w.e. yr−1 (meters water equivalent per year) as well as the high measured ablation of up to 11 m w.e. yr−1 is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000–2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers' front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-25
    Description: Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-11
    Description: We present surface mass balance simulations of the Southern Patagonia Icefield driven by downscaled reanalysis data. The simulations were validated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the Icefield from spring 2004. The high measured accumulation of snow as well as the high measured ablation is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975–2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975–2000 to 2000–2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers' front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-19
    Description: Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000 to 2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16´40´´ S, 73°21´14´´ W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16% ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4 to 7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-11
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved coverage of data has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-03
    Description: Ice elevation changes of the Northern Patagonia Icefield (NPI) were analyzed by comparing three Digital Elevation Models (DEM) corresponding to 1975 (constructed based on topographic maps), the SRTM DEM of 2000 yr and a SPOT 5 DEM of 2005. In addition, the glacier length fluctuations and the surface area evolution between 2001 and 2011 of 25 glaciers of the NPI were studied: the information extracted from the Landsat ETM+ satellite image of 11 March 2001 was compared to the measurements performed based on the Landsat ETM+ satellite image of 19 February 2011. From a global point of view, the majority of the studied glaciers thinned, retreated and lost surface between 2001 and 2011, only few glaciers (Leones, Nef, Pared Sur and Soler) located on the eastern side of the NPI have been stable. Glaciers located on the western side of the NPI suffered a stronger wasting compared to the glaciers located on the eastern side. Overall, over the ablation areas of the NPI (below 1150 m a.s.l.) a more rapid thinning of 2.6 m yr−1 occurred between 2000 and 2005 yr compared to the period 1975–2000, in which a mean thinning of 1.7 m yr−1 was measured for the same zones of the NPI. For the whole period (1975–2005) the most important thinning of the ablation areas has been estimated for HPN-1 Glacier (4.4 m yr−1) followed by Benito (3.4 m yr−1), Fraenkel (2.4 m yr−1), Gualas (2.1 m yr−1) and Acodado glaciers, all of them located on the western side of the NPI. Between 2001 and 2011, a noteworthy retreat of 1.9 km was experienced by Gualas Glacier and by Reichert Glacier with 1.6 km, both located on the north-western side of the NPI. On the south-western side of the NPI, during the same decennia, Steffen Glacier experienced a remarkable retreat of 1.6 km as well. During the 2001–2011 period, Steffen Glacier more than doubled its rate of retreat (compared to the 1979–2001 period) and experienced the disintegration of its main front as well as a lateral tongue that retreated 3.1 km. The most significant retreat observed on the eastern side was experienced by Colonia Glacier (1 km). Area loss was also relevant during the period 2001–2011. Overall, the icefield experienced a reduction of 50.6 km2 which represents a 1.3 % relative to the surface area calculated for 2001 yr. The most remarkable surface reduction was observed for HPN-1 Glacier that lost 3.2 % of its surface estimated in 2001, followed by Steffen Glacier (2.8 %). We suggest that the glacier shrinking observed in the NPI is controlled firstly by atmospheric warming, as it has been reported in this area. Nevertheless, updated climatic studies are needed in order to confirm this suggestion. If the detected past climate trends persist, in the future, glaciers of the NPI will continuous or even increase their rate of shrinking generating important consequences for this region like the production of Glacier Lake Outburst Flood events or the decrease of the melt-water runoff in the long-term future.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-12
    Description: Glaciar San Rafael in the Northern Patagonian Icefield, with a length of 46 km and an ice area of 722 km2, is the lowest latitude tidewater outlet glacier in the world and one of the fastest and most productive glaciers in southern South America in terms of iceberg flux. In a joint project of the TU Dresden and CECS, spatio-temporal velocity fields in the region of the glacier front were determined in a campaign in austral spring of 2009. Monoscopic terrestrial image sequences were recorded with an intervallometer mode high resolution digital camera over several days. In these image sequences, a large number of glacier surface points were tracked by subpixel accuracy feature tracking techniques. Scaling and georeferencing of the trajectories obtained from image space tracking was performed via a multi-station GPS-supported photogrammetric network. The technique allows for tracking hundreds of glacier surface points at a measurement accuracy in the order of one decimeter and an almost arbitrarily high temporary resolution. The results show velocities of up to 16 m per day. No significant tidal signals could be observed. Our velocities are in agreement with earlier measurements from theodolite and satellite interferometry performed in 1986–1994, suggesting that the current thinning of 3.5 m/y at the front is not due to dynamic thinning but rather by enhanced melting.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-28
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...