ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-16
    Description: Stratospheric ozone loss inside the Arctic polar vortex for the winters between 2004–2005 and 2012–2013 has been quantified using measurements from the space-borne Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). For the first time, an evaluation has been performed of six different ozone loss estimation methods based on the same single observational dataset to determine the Arctic ozone loss (mixing ratio loss profiles and the partial-column ozone losses between 380 and 550 K). The methods used are the tracer-tracer correlation, the artificial tracer correlation, the average vortex profile descent, and the passive subtraction with model output from both Lagrangian and Eulerian chemical transport models (CTMs). For the tracer-tracer, the artificial tracer, and the average vortex profile descent approaches, various tracers have been used that are also measured by ACE-FTS. From these seven tracers investigated (CH4, N2O, HF, OCS, CFC-11, CFC-12, and CFC-113), we found that CH4, N2O, HF, and CFC-12 are the most suitable tracers for investigating polar stratospheric ozone depletion with ACE-FTS v3.5. The ozone loss estimates (in terms of the mixing ratio as well as total column ozone) are generally in good agreement between the different methods and among the different tracers. However, using the average vortex profile descent technique typically leads to smaller maximum losses (by approximately 15–30 DU) compared to all other methods. The passive subtraction method using output from CTMs generally results in slightly larger losses compared to the techniques that use ACE-FTS measurements only. The ozone loss computed, using both measurements and models, shows the greatest loss during the 2010–2011 Arctic winter. For that year, our results show that maximum ozone loss (2.1–2.7 ppmv) occurred at 460 K. The estimated partial-column ozone loss inside the polar vortex (between 380 and 550 K) using the different methods is 66–103, 61–95, 59–96, 41–89, and 85–122 DU for March 2005, 2007, 2008, 2010, and 2011, respectively. Ozone loss is difficult to diagnose for the Arctic winters during 2005–2006, 2008–2009, 2011–2012, and 2012–2013, because strong polar vortex disturbance or major sudden stratospheric warming events significantly perturbed the polar vortex, thereby limiting the number of measurements available for the analysis of ozone loss.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-08
    Description: We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004–2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-14
    Description: We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-04-23
    Description: In this study backward trajectories from the tropical lower stratosphere were calculated for the Northern Hemisphere (NH) winters 1995–1996, 1997–1998 (El Niño) and 1998–1999 (La Niña) and summers 1996, 1997 and 1999 using both ERA-40 reanalysis data of the European Centre for Medium-Range Weather Forecast (ECMWF) and coupled Chemistry-Climate Model (CCM) data. The calculated trajectories were analysed to determine the distribution of points where individual air masses encounter the minimum temperature and thus minimum water vapour mixing ratio during their ascent through the tropical tropopause layer (TTL) into the stratosphere. The geographical distribution of these dehydration points and the local conditions there determine the overall water vapour entry into the stratosphere. Results of two CCMs are presented: the ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) from the German Aerospace Center (DLR) and the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (hereafter: FUB-CMAM-CHEM). In the FUB-CMAM-CHEM model the minimum temperatures are overestimated by about 9 K in NH winter and about 3 K in NH summer, resulting in too high water vapour entry values compared to ERA-40. However, the geographical distribution of dehydration points is fairly similar to ERA-40 for NH winter 1995–1996 and 1998–1999. The distribution of dehydration points in the boreal summer 1996 suggests an influence of the Indian monsoon upon the water vapour transport. The E39/C model displays a temperature bias of about +5 K. Hence, the minimum water vapour mixing ratios are higher relative to ERA-40. The geographical distribution of dehydration points is fairly well in NH winter 1995–1996 and 1997–1998 with respect to ERA-40. The distribution is not reproduced for the NH winter 1998–1999 (La Niña event) compared to ERA-40. There is an excessive water vapour flux through warm regions e.g. Africa in the NH winter and summer. The possible influence of the Indian monsoon on the transport is not seen in the boreal summer 1996. Further, the residence times of air parcels in the TTL were derived from the trajectory calculations. The analysis of the residence times reveals that in both CCMs residence times in the TTL are lower compared to ERA-40 and the seasonal variation is hardly present.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-07
    Description: The SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in Global Climate Models (GCMs) and Earth System Models (ESMs) to enable the simulation of interactions between the ozone layer and climate. So far, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. SWIFT is based on a set of coupled differential equations, which simulate the polar vortex averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at single processes and an independent validation of the different parameterizations for the single processes contained in the differential equations. The training of the original SWIFT model was based on fitting complete model runs to satellite observations and did not allow this. A revised formulation of the system of differential equations is developed, which closely fits vortex averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the SWIFT model are purely chemical rates of change in the new version, while the rates of change in the original SWIFT version included a transport effect caused by the original training on satellite data. Hence, the new version allows for an implementation into climate models in combination with an existing stratospheric transport scheme. Finally, the model is now formulated on several vertical levels encompassing the vertical range in which polar ozone depletion is observed. The results of the SWIFT model are validated with independent MLS satellite observations and the results of the original detailed chemistry model of ATLAS.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-21
    Description: The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends. The Extrapolar SWIFT model employs a repro-modelling approach, where algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equations system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, local ozone column, mixing ratio of ozone and of the ozone depleting families (Cly, Bry, NOy and HOy). We will show that these 9 variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading). For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10 year simulation, the ozone layer, simulated by SWIFT, shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30–100 terms. Nowadays, computers can calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-13
    Description: The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the original training on satellite data. Hence, the new version allows for an implementation into climate models in combination with an existing stratospheric transport scheme. Finally, the model is now formulated on several vertical levels encompassing the vertical range in which polar ozone depletion is observed. The results of the Polar SWIFT model are validated with independent Microwave Limb Sounder (MLS) satellite observations and output from the original detailed chemistry model of ATLAS.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-18
    Description: We present a Lagrangian convective transport scheme developed for global chemistry and transport models, which considers the variable residence time that an air parcel spends in convection. This is particularly important for accurately simulating the tropospheric chemistry of short-lived species, e.g., for determining the time available for heterogeneous chemical processes on the surface of cloud droplets. In current Lagrangian convective transport schemes air parcels are stochastically redistributed within a fixed time step according to estimated probabilities for convective entrainment as well as the altitude of detrainment. We introduce a new scheme that extends this approach by modeling the variable time that an air parcel spends in convection by estimating vertical updraft velocities. Vertical updraft velocities are obtained by combining convective mass fluxes from meteorological analysis data with a parameterization of convective area fraction profiles. We implement two different parameterizations: a parameterization using an observed constant convective area fraction profile and a parameterization that uses randomly drawn profiles to allow for variability. Our scheme is driven by convective mass fluxes and detrainment rates that originate from an external convective parameterization, which can be obtained from meteorological analysis data or from general circulation models. We study the effect of allowing for a variable time that an air parcel spends in convection by performing simulations in which our scheme is implemented into the trajectory module of the ATLAS chemistry and transport model and is driven by the ECMWF ERA-Interim reanalysis data. In particular, we show that the redistribution of air parcels in our scheme conserves the vertical mass distribution and that the scheme is able to reproduce the convective mass fluxes and detrainment rates of ERA-Interim. We further show that the estimated vertical updraft velocities of our scheme are able to reproduce wind profiler measurements performed in Darwin, Australia, for velocities larger than 0.6 m s−1. SO2 is used as an example to show that there is a significant effect on species mixing ratios when modeling the time spent in convective updrafts compared to a redistribution of air parcels in a fixed time step. Furthermore, we perform long-time global trajectory simulations of radon-222 and compare with aircraft measurements of radon activity.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-02
    Description: Stratospheric ozone loss inside the Arctic polar vortex for the winters between 2004/2005 and 2012/2013 has been quantified using measurements from the space-borne Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). Six different methods, including tracer-tracer correlation, artificial tracer correlation, average vortex profile descent, and passive subtraction with model output from both Lagrangian and Eulerian chemical transport models (CTMs), have been employed to determine the Arctic ozone loss (mixing ratio loss profiles and the partial column ozone losses between 380 and 550K). For the tracer-tracer, the artificial tracer, and the average vortex profile descent approaches, various tracers have been used. Here, we show that CH4, N2O, HF, and CFC-12 are suitable tracers for investigating polar stratospheric ozone depletion with ACE-FTS. The ozone loss estimates (in terms of the mixing ratio as well as total column ozone) are generally in good agreement between the different methods and among the different tracers. However, the tracer-tracer correlation method does not agree with the other estimation methods in March 2005 and using the average vortex profile descent technique typically leads to smaller maximum losses compared to all other methods. The passive subtraction method using output from CTMs generally results in smaller uncertainties and slightly larger losses compared to the techniques that use ACE-FTS measurements only. The ozone loss computed, using both measurements and models, shows the greatest loss during the 2010/2011 Arctic winter. For that year, our results show that maximum ozone loss (2.1–2.7ppmv) occurred at 460K. The estimated partial column ozone loss inside the polar vortex (between 380K and 550K) is 66–103DU, 61–95DU, 59–96DU, 41–89DU, and 85–122DU for March 2005, 2007, 2008, 2010, and 2011, respectively. Ozone loss is difficult to diagnose during 2005/2006, 2008/2009, 2011/2012, and 2012/2013 because strong polar vortex disturbance or major sudden stratospheric warming events significantly perturbed the polar vortex thereby limiting the number of measurements available for the analysis.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-06
    Description: We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere, and of the relevant reaction pathways and cycles. While the reaction pathways and cycles involved in polar ozone depletion are well known, quantitative estimates of the importance of single reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, that is ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004/2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa. Mixing ratios and reaction rates are obtained from runs of the ATLAS Chemistry and Transport Model driven by ECMWF ERA Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...