ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-31
    Print ISSN: 0167-6369
    Electronic ISSN: 1573-2959
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-13
    Description: Estimates of potential harmful effects on ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a 1-year simulation of a high-resolution implementation of the Global Environmental Multiscale-Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data: total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulfur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulfur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-based estimates of fugitive dust emissions, shown to be a factor of 10 higher than reported to national emissions inventories (Zhang et al., 2018), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulfur deposition when observations were corrected to account for throughfall in needleleaf forests. The model–observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface-collected particles (Wang et al., 2015).Both original and observation-corrected model estimates of sulfur, nitrogen, and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2017) methods for calculating critical loads, using variations on the Simple Mass Balance model for terrestrial ecosystems, and the Steady State Water Chemistry and First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage was predicted within each of the regions represented by the ecosystem critical load datasets used here, using a combination of 2011 and 2013 emissions inventories. The spatial extent of the regions in exceedance of critical loads varied between 1  ×  104 and 3.3  ×  105 km2, for the more conservative observation-corrected estimates of deposition, with the variation dependent on the ecosystem and critical load calculation methodology. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined.Base cation deposition was shown to be sufficiently high in the region to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary dust particles as a function of their size. We strongly recommend the use of observation-based correction of model-simulated deposition in estimating critical load exceedances, in future work.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-14
    Description: A warming climate is rapidly changing the distribution and exchanges of carbon within high Arctic ecosystems. Few data exist, however, which quantify exchange of both carbon dioxide (CO2) and methane (CH4) between the atmosphere and freshwater systems, or estimate freshwater contributions to total catchment exchange of these gases, in the high Arctic. During the summers of 2005 and 2007–2012, we quantified CO2 and CH4 concentrations in, and atmospheric exchange with, common freshwater systems in the high Arctic watershed of Lake Hazen, Nunavut, Canada. We identified four types of biogeochemically-distinct freshwater systems in the watershed, however mean CO2 concentrations (21–28 μmol L−1) and atmospheric exchange (−0.013–0.046 g C-CO2 m−2 d−1) were similar between these systems. Seasonal flooding of ponds bordering Lake Hazen generated considerable CH4 emissions to the atmosphere (0.008 g C-CH4 m−2 d−1), while all other freshwater systems were minimal emitters of this gas (〈 0.001 g C-CH4 m−2 d−1). Measurements made on terrestrial landscapes in the same watershed between 2008–2012 determined that the near-barren polar semidesert was a very weak consumer of atmospheric CO2 (−0.004 g C-CO2 m−2 d−1), but an important consumer of atmospheric CH4 (−0.001 g C-CH4 m−2 d−1). Alternatively, meadow wetlands were very productive consumers of atmospheric CO2 (−0.96 g C-CO2 m−2 d−1) but relatively weak emitters of CH4 to the atmosphere (0.001 g C-CH4m−2 d−1). When using ecosystem-cover classification mapping, we found that freshwaters were unimportant contributors to total watershed carbon exchange, in part because they covered less than 10 % of total cover in the watershed. High Arctic watersheds are experiencing warmer and wetter climates than in the past, which may have implications for the net uptake of carbon greenhouse gases by currently underproductive polar semidesert and freshwater systems.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-31
    Description: We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4–5.3 Gt), terrestrial environments (particularly soils: 250–1000 Gg), and aquatic ecosystems (e.g., oceans: 270–450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg^0 concentrations and Hg^II wet deposition in Europe and the US (− 1.5 to − 2.2% per year). Smaller atmospheric Hg^0 declines (− 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized Hg^II in the tropical and subtropical free troposphere where deep convection can scavenge these Hg^II reservoirs. As a result, up to 50% of total global wet Hg^II deposition has been predicted to occur to tropical oceans. Ocean Hg^0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900–4200 Mg/year). Enhanced seawater Hg^0 levels suggest enhanced Hg^0 ocean evasion in the intertropical convergence zone, which may be linked to high Hg^II deposition. Estimates of gaseous Hg^0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020–1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg^0 deposition via plant inputs dominates, accounting for 57–94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170–300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of Royal Swedish Academy of Sciences.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-26
    Description: Estimates of potential harmful effects to ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a one year simulation of a high resolution implementation of the Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data; total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulphur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulphur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-observation-based estimates of fugitive dust emissions, shown to be a factor of ten higher than reported values (Zhang et al., 2017), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulphur deposition when observations were corrected to account for throughfall in needleleaf forests. The model-observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface collected particles (Wang et al., 2015). Both original and observation-corrected model estimates of sulphur, nitrogen and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2004, 2016, 2017) protocols for critical loads, using variations on the Simple Mass Balance model for forest and terrestrial ecosystems, and the Steady State Water Chemistry and the First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage at 2013/14 emissions and deposition levels was predicted for regions within each of the ecosystem critical load datasets examined here. The spatial extent of the regions in exceedance of critical loads varied between 1 × 104 and 3.3 × 105 km2, for the more conservative observation-corrected estimates of deposition, with the variation dependant on the ecosystem and critical load protocol. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined. Base cation deposition was shown to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary particles dust particles as a function of their size.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-26
    Description: A warming climate is rapidly changing the distribution and exchanges of carbon within high Arctic ecosystems. Few data exist, however, which quantify exchange of both carbon dioxide (CO2) and methane (CH4) between the atmosphere and freshwater systems, or estimate freshwater contributions to total catchment exchange of these gases, in the high Arctic. During the summers of 2005 and 2007–2012, we quantified CO2 and CH4 concentrations in, and atmospheric exchange with, common freshwater systems in the high Arctic watershed of Lake Hazen, Nunavut, Canada. We identified four types of biogeochemically distinct freshwater systems in the watershed; however mean CO2 concentrations (21–28 µmol L−1) and atmospheric exchange (−0.013 to +0.046 g C–CO2 m−2 day−1) were similar between these systems. Seasonal flooding of ponds bordering Lake Hazen generated considerable CH4 emissions to the atmosphere (+0.008 g C–CH4 m−2 day−1), while all other freshwater systems were minimal emitters of this gas (
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-30
    Description: Oil sands upgrading facilities in the Athabasca oil sands region (AOSR) in Alberta, Canada, have been reporting mercury (Hg) emissions to public government databases (National Pollutant Release Inventory (NPRI)) since the year 2000, yet the relative contribution of these emissions to ambient Hg deposition remains unknown. The impact of oil sands emissions (OSE) on Hg levels in and around the AOSR, relative to contributions from global (anthropogenic, geogenic and legacy) emissions and regional biomass burning emissions (BBE), was assessed using a global 3D-process-based Hg model, GEM-MACH-Hg, from 2012 to 2015. In addition, the relative importance of year-to-year changes in Hg emissions from the above sources and meteorological conditions to inter-annual variations in Hg deposition was examined. Surface air concentrations of Hg species and annual snowpack Hg loadings simulated by the model were found comparable to measured levels in the AOSR, suggesting consistency between reported Hg emissions from oil sands activities and Hg levels in the region. As a result of global-scale transport and the long lifetime of gaseous elemental Hg (Hg(0)), surface air concentrations of Hg(0) in the AOSR reflected the background Hg(0) levels in Canada. By comparison, average air concentrations of total oxidized Hg (efficiently deposited Hg species) in the AOSR were elevated up to 60 % within 50 km of the oil sands Hg emission sources. Hg emissions from wildfire events led to episodes of high ambient Hg(0) concentrations and deposition enrichments in northern Alberta, including the AOSR, during the burning season. Hg deposition fluxes in the AOSR were within the range of the deposition fluxes measured for the entire province of Alberta. On a broad spatial scale, contribution from imported Hg from global sources dominated the annual background Hg deposition in the AOSR, with present-day global anthropogenic emissions contributing to 40 % (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...