ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (18)
  • Copernicus  (2)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stewart, Joseph A; Wilson, Paul A; Edgar, Kirsty M; Anand, Pallavi; James, Rachael H (2012): Geochemical assessment of the palaeoecology, ontogeny, morphotypic variability and palaeoceanographic utility of “Dentoglobigerina” venezuelana. Marine Micropaleontology, 84-85, 74-86, https://doi.org/10.1016/j.marmicro.2011.11.003
    Publication Date: 2024-01-09
    Description: To better understand the links between the carbon cycle and changes in past climate over tectonic timescales we need new geochemical proxy records of secular change in silicate weathering rates. A number of proxies are under development, but some of the most promising (e.g. palaeoseawater records of Li and Nd isotope change) can only be employed on such large samples of mono-specific foraminifera that application to the deep sea sediment core archive becomes highly problematic. "Dentoglobigerina" venezuelana presents a potentially attractive target for circumventing this problem because it is a typically large (〉 355 mm diameter), abundant and cosmopolitan planktic foraminifer that ranges from the early Oligocene to early Pliocene. Yet considerable taxonomic and ecological uncertainties associated with this taxon must first be addressed. Here, we assess the taxonomy, palaeoecology, and ontogeny of "D." venezuelana using stable isotope (oxygen and carbon) and Mg/Ca data measured in tests of late Oligocene to early Miocene age from Ocean Drilling Program (ODP) Site 925, on Ceara Rise, in the western equatorial Atlantic. To help constrain the depth habitat of "D." venezuelana relative to other species we report the stable isotope composition of selected planktic foraminifera species within Globigerina, Globigerinoides, Paragloborotalia and Catapsydrax. We define three morphotypes of "D." venezuelana based on the morphology of the final chamber and aperture architecture. We determine the trace element and stable isotope composition of each morphotype for different size fractions, to test the validity of pooling these morphotypes for the purposes of generating geochemical proxy datasets and to assess any ontogenetic variations in depth habitat. Our data indicate that "D." venezuelana maintains a lower thermocline depth habitat at Ceara Rise between 24 and 21 Ma. Comparing our results to published datasets we conclude that this lower thermocline depth ecology for the Oligo-Miocene is part of an Eocene-to-Pliocene evolution of depth habitat from surface to sub-thermocline for "D." venezuelana. Our size fraction data advocate the absence of photosymbionts in "D." venezuelana and suggest that juveniles calcify higher in the water column, descending into slightly deeper water during the later stages of its life cycle. Our morphotype data show that d18O and d13C variation between morphotypes is no greater than within-morphotype variability. This finding will permit future pooling of morphotypes in the generation of the "sample hungry" palaeoceanographic records.
    Keywords: 154-925A; AGE; Bolivina rhomboidalis; Catapsydrax ciperoensis; Catapsydrax ciperoensis, Magnesium/Calcium ratio; Catapsydrax ciperoensis, δ13C; Catapsydrax ciperoensis, δ18O; Catapsydrax dissimilis; Catapsydrax dissimilis, Magnesium Calcium ratio; Catapsydrax dissimilis, δ13C; Catapsydrax dissimilis, δ18O; Catapsydrax indianus; Catapsydrax indianus, δ13C; Catapsydrax indianus, δ18O; Cibicidoides mundulus; Cibicidoides mundulus, δ13C; Cibicidoides mundulus, δ18O; Dentoglobigerina venezuelana; Dentoglobigerina venezuelana, Magnesium/Calcium ratio; Dentoglobigerina venezuelana, δ13C; Dentoglobigerina venezuelana, δ18O; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Globigerina bulloides; Globigerina bulloides, Magnesium/Calcium ratio; Globigerina bulloides, δ13C; Globigerina bulloides, δ18O; Globigerinoides altiapertura; Globigerinoides altiapertura, δ13C; Globigerinoides altiapertura, δ18O; Globigerinoides primordius; Globigerinoides primordius, Magnesium/Calcium ratio; Globigerinoides primordius, δ13C; Globigerinoides primordius, δ18O; Joides Resolution; Leg154; Ocean Drilling Program; ODP; Oridorsalis umbonatus; Oridorsalis umbonatus, δ13C; Oridorsalis umbonatus, δ18O; Paragloborotalia bella, Magnesium/Calcium ratio; Paragloborotalia bella, δ13C; Paragloborotalia bella, δ18O; Paragloborotalia siakensis; Paragloborotalia siakensis, Magnesium/Calcium ratio; Paragloborotalia siakensis, δ13C; Paragloborotalia siakensis, δ18O; Sample code/label; Sample ID; Size fraction; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 564 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-02
    Description: The Antarctic Cold Reversal (ACR; 14.7 to 13 ka) phase of the last deglaciation saw a pause in the rise of atmospheric pCO2 and Antarctic temperature, contrasted with warming in the North. Mechanisms associated with interhemispheric heat transfer have been proposed to explain features of this event, but the response of marine biota and the carbon cycle are debated. The Southern Ocean is a key site of deep-water exchange with the atmosphere, hence deglacial changes in nutrient cycling, circulation, and productivity in this region may have global impact. Here we present a new perspective on the sequence of events in the deglacial Southern Ocean, that includes multi-faunal benthic assemblage (foraminifera and cold-water corals) and geochemical data (Ba/Ca, 14C, δ11B) from the Drake Passage. Our records feature anomalies during peak ACR conditions indicative of circulation, biogeochemistry, and regional ecosystem perturbations. Within this cold episode, peak abundances of thick-walled benthic foraminifera and cold-water corals are observed at shallow depths in the sub-Antarctic (~300 m), while coral populations at greater depths and further south diminished. Geochemical data indicate that habitat shifts were associated with enhanced primary productivity in the sub-Antarctic, a more stratified water column, and poorly oxygenated bottom water. These results are consistent with northward migration of primary production in response to Antarctic cooling and widespread biotic turnover across the Southern Ocean. We suggest that expanding sea ice, suppressed ventilation, and shifting centres of upwelling drove changes in planktic and benthic ecology, and were collectively instrumental in halting CO2 rise in the mid-deglaciation.
    Keywords: AGE; Age, uncertainty; Barium/Calcium ratio; Benthic foraminifera; circulation; cold-water corals; Comment; Depth, bathymetric; DH117; DH74; DH75; DR27; DR34; DR35; DR38; DR40; Drake Passage; Dredge; DRG; Elevation of event; Event label; Genus; Latitude of event; Longitude of event; Nathaniel B. Palmer; NBP0805; NBP0805-DR27; NBP0805-DR34; NBP0805-DR35; NBP0805-DR36; NBP0805-DR38; NBP0805-DR40; NBP0805-TB04; NBP1103; NBP1103-DH07; NBP1103-DH11; NBP1103-DH112; NBP1103-DH113; NBP1103-DH117; NBP1103-DH120; NBP1103-DH14; NBP1103-DH15; NBP1103-DH16; NBP1103-DH19; NBP1103-DH74; NBP1103-DH75; pH; productivity; Reference/source; Sample ID; Site; South Pacific Ocean; δ11B, carbonate
    Type: Dataset
    Format: text/tab-separated-values, 1741 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-02
    Description: The Antarctic Cold Reversal (ACR; 14.7 to 13 ka) phase of the last deglaciation saw a pause in the rise of atmospheric pCO2 and Antarctic temperature, contrasted with warming in the North. Mechanisms associated with interhemispheric heat transfer have been proposed to explain features of this event, but the response of marine biota and the carbon cycle are debated. The Southern Ocean is a key site of deep-water exchange with the atmosphere, hence deglacial changes in nutrient cycling, circulation, and productivity in this region may have global impact. Here we present a new perspective on the sequence of events in the deglacial Southern Ocean, that includes multi-faunal benthic assemblage (foraminifera and cold-water corals) and geochemical data (Ba/Ca, 14C, δ11B) from the Drake Passage. Our records feature anomalies during peak ACR conditions indicative of circulation, biogeochemistry, and regional ecosystem perturbations. Within this cold episode, peak abundances of thick-walled benthic foraminifera and cold-water corals are observed at shallow depths in the sub-Antarctic (~300 m), while coral populations at greater depths and further south diminished. Geochemical data indicate that habitat shifts were associated with enhanced primary productivity in the sub-Antarctic, a more stratified water column, and poorly oxygenated bottom water. These results are consistent with northward migration of primary production in response to Antarctic cooling and widespread biotic turnover across the Southern Ocean. We suggest that expanding sea ice, suppressed ventilation, and shifting centres of upwelling drove changes in planktic and benthic ecology, and were collectively instrumental in halting CO2 rise in the mid-deglaciation.
    Keywords: AGE; Age, error; Benthic foraminifera; circulation; cold-water corals; DH117; DH40; DH43; DH74; DH75; DR23; DR27; DR34; DR35; DR38; DR40; Drake Passage; Dredge; DRG; Elevation of event; Event label; Genus; Latitude of event; Location; Method comment; Nathaniel B. Palmer; NBP0805; NBP0805-DR22; NBP0805-DR23; NBP0805-DR27; NBP0805-DR34; NBP0805-DR35; NBP0805-DR36; NBP0805-DR38; NBP0805-DR39; NBP0805-DR40; NBP0805-TB04; NBP0805-TB04a; NBP1103; NBP1103-DH07; NBP1103-DH09; NBP1103-DH11; NBP1103-DH112; NBP1103-DH113; NBP1103-DH115; NBP1103-DH117; NBP1103-DH120; NBP1103-DH128; NBP1103-DH129; NBP1103-DH134; NBP1103-DH138; NBP1103-DH14; NBP1103-DH140; NBP1103-DH141; NBP1103-DH143; NBP1103-DH15; NBP1103-DH16; NBP1103-DH19; NBP1103-DH22; NBP1103-DH24; NBP1103-DH36; NBP1103-DH37; NBP1103-DH38; NBP1103-DH40; NBP1103-DH43; NBP1103-DH74; NBP1103-DH75; NBP1103-DH87; NBP1103-DH88; NBP1103-DH91; NBP1103-DH95; NBP1103-DH96; NBP1103-DH97; NBP1103-TB01; NBP1103-TB02; NBP1103-TB10; NBP1103-TO104; pH; productivity; Reference/source; Sample ID; Scotia Sea; South Pacific Ocean
    Type: Dataset
    Format: text/tab-separated-values, 8524 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-02
    Description: The Antarctic Cold Reversal (ACR; 14.7 to 13 ka) phase of the last deglaciation saw a pause in the rise of atmospheric pCO2 and Antarctic temperature, contrasted with warming in the North. Mechanisms associated with interhemispheric heat transfer have been proposed to explain features of this event, but the response of marine biota and the carbon cycle are debated. The Southern Ocean is a key site of deep-water exchange with the atmosphere, hence deglacial changes in nutrient cycling, circulation, and productivity in this region may have global impact. Here we present a new perspective on the sequence of events in the deglacial Southern Ocean, that includes multi-faunal benthic assemblage (foraminifera and cold-water corals) and geochemical data (Ba/Ca, 14C, δ11B) from the Drake Passage. Our records feature anomalies during peak ACR conditions indicative of circulation, biogeochemistry, and regional ecosystem perturbations. Within this cold episode, peak abundances of thick-walled benthic foraminifera and cold-water corals are observed at shallow depths in the sub-Antarctic (~300 m), while coral populations at greater depths and further south diminished. Geochemical data indicate that habitat shifts were associated with enhanced primary productivity in the sub-Antarctic, a more stratified water column, and poorly oxygenated bottom water. These results are consistent with northward migration of primary production in response to Antarctic cooling and widespread biotic turnover across the Southern Ocean. We suggest that expanding sea ice, suppressed ventilation, and shifting centres of upwelling drove changes in planktic and benthic ecology, and were collectively instrumental in halting CO2 rise in the mid-deglaciation.
    Keywords: Alabaminella weddellensis; Angulogerina earlandi; Bolivina spp.; Bulimina aculeata; Bulimina sp.; Calendar age; Cassidulina carinata; Cassidulina crassa; Cibicidoides spp.; Core; DEPTH, sediment/rock; Epistominella exigua; Falkland Plateau, Southern Falkland Plateau (same site as GC526); Fissurina spp.; Foraminifera; Foraminifera, benthic agglutinated; Fursenkoina fusiformis; GC; GC528 CORE_NO 528; Globobulimina sp.; Gravity corer; Hoeglundina elegans; Hoeglundina sp.; James Clark Ross; JR20110128; JR244; JR244-GC528; Lagena spp.; Melonis barleeanus; Melonis spp.; Nonionella auris; Nonionella pulchella; Nonionella spp.; Number of taxa; Nuttallides umbonifera; Oridorsalis sp.; Oridorsalis umbonatus; Pullenia bulloides; Pullenia quinqueloba; Pyrgo spp.; Sphaeroidina bulloides; Total counts; Triloculina spp.; Uvigerina bifurcata; Uvigerina spp.; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 4995 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-04
    Description: Data from journal article of Century-long records of sedimentary input on a Caribbean reef from coral Ba/Ca ratios: linking coral health and land use. FR12 Forereef collected at 16.13715 ˚N, 88.26015 ˚W BR06 Backreef collected at 16.14045 ˚N, 88.26015 132 ˚W Here we present century-long Ba/Ca records from two colonies of the coral Siderastrea siderea as a proxy for local riverine sediment flux to the southern Mesoamerican Barrier Reef System (MBRS). The two coral colonies have contrasting growth trends over the past century. The colony with a declining extension rate from the forereef of the MBRS, mainly receives riverine input from Honduras, whilst the coral from the backreef, which does not exhibit a decline in extension rate, primarily receives riverine input from the more sparsely populated regions of Belize. Ba/Ca increased (〉70 %) through time in the forereef colony while the backreef colony showed little long-term increase in Ba/Ca over the last 100 years. Data were collected using laser ablation inductively coupled plasma mass spectrometry.
    Keywords: barium; Coral Ba/Ca; proxy; River discharges
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-04
    Keywords: Barium/Calcium ratio; Barium/Calcium ratio, standard deviation; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard deviation; Sample code/label; Standard
    Type: Dataset
    Format: text/tab-separated-values, 273 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-04
    Keywords: BR06_Backreef; DATE/TIME; Event label; FR12_Forereef; Siderastrea siderea, Barium/Calcium ratio
    Type: Dataset
    Format: text/tab-separated-values, 29 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-04
    Keywords: DATE/TIME; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 161 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-04
    Keywords: barium; Bin description; BR06_Backreef; Coral Ba/Ca; Event label; FR12_Forereef; proxy; River discharges; Siderastrea siderea, Barium/Calcium ratio
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-04
    Keywords: barium; BR06_Backreef; Coral Ba/Ca; DATE/TIME; Event label; FR12_Forereef; Luminescence; proxy; River discharges
    Type: Dataset
    Format: text/tab-separated-values, 2011 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...