ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-01
    Description: In this work neural networks (NNs) have been used for the retrieval of volcanic ash and sulfur dioxide (SO2) parameters based on Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral measurements. Different neural networks were built in order for each parameter to be retrieved, for experimenting with different topologies and evaluating their performances. The neural networks' capabilities to process a large amount of new data in a very fast way have been exploited to propose a novel applicative scheme aimed at providing a complete characterization of eruptive products. As a test case, the May 2010 Eyjafjallajókull eruption has been considered. A set of seven MODIS images have been used for the training and validation phases. In order to estimate the parameters associated to the volcanic eruption, such as ash mass, effective radius, aerosol optical depth and SO2 columnar abundance, the neural networks have been trained using the retrievals from well-known algorithms. These are based on simulated radiances at the top of the atmosphere and are estimated by radiative transfer models. Three neural network topologies with a different number of inputs have been compared: (a) three thermal infrared MODIS channels, (b) all multispectral MODIS channels and (c) the channels selected by a pruning procedure applied to all MODIS channels. Results show that the neural network approach is able to estimate the volcanic eruption parameters very well, showing a root mean square error (RMSE) below the target data standard deviation (SD). The network built considering all the MODIS channels gives a better performance in terms of specialization, mainly on images close in time to the training ones, while the networks with less inputs reveal a better generalization performance when applied to independent data sets. In order to increase the network's generalization capability and to select the most significant MODIS channels, a pruning algorithm has been implemented. The pruning outcomes revealed that channel sensitive to ash parameters correspond to the thermal infrared, visible and mid-infrared spectral ranges. The neural network approach has been proven to be effective when addressing the inversion problem for the estimation of volcanic ash and SO2 cloud parameters, providing fast and reliable retrievals, important requirements during volcanic crises.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-16
    Description: The Educational & Outreach Group (E&O Group) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) designed a portable museum to bring on the road educational activities focused on seismology, seismic hazard and Earth science. This project was developed for the first edition of the Science Festival organized in Genoa, Italy, in 2003. The museum has been mainly focused to school students of all ages and explains the main topics of geophysics through posters, movie and slide presentations, and exciting interactive experiments. This new INGV museum has been remarkably successful, being visited by more than 8000 children and adults during the 10 days of the Science Festival. It is now installed at the INGV headquarters in Rome and represents the main attraction during the visits of the schools all year round.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-04
    Description: In this work neural networks have been used for the retrieval of volcanic ash and SO2 parameters based on Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral measurements. Different neural networks were built for each parameter to be retrieved, experimenting different topologies and evaluating their performances. As test case the May 2010 Eyjafjallajokull eruption has been considered. A set of six MODIS images have been used for the training and validation phases. In order to estimate of the parameters associated with volcanic eruption such as ash mass, effective radius, aerosol optical depth and sulphur dioxide columnar abundance, the neural networks have been trained by using the retrievals obtained from well known algorithms based on simulated radiances at the top of the atmosphere estimated from radiative transfer models. Three neural network's topologies with a different number of inputs have been compared: (a) only three MODIS TIR channels, (b) all multispectral MODIS channels and (c) only the channels that were selected by a pruning procedure applied to all MODIS channels. Results show that the neural network approach is able to reproduce very well the results obtained from the standard algorithms for all retrieved parameters, showing a root mean square error (RMSE) computed from the validation sets below the target data standard deviation (STD). In particular the network built considering all the MODIS channels gives a better performance in terms of specialization, mainly on images close in time to the training ones, while, as expected, the networks with less inputs reveals a better generalization performance when applied to independent datasets. In order to increase the network generalization capability, a pruning algorithm has been also implemented. Such a procedure permits to operate a features selection, extracting only the most significant MODIS channels from images. The results of pruning revealed that obtained inputs, for all the retrieved parameters, correspond to the TIR channels sensitive to ash, plus some other channels in the visible and mid-infrared spectral ranges. The artificial neural network approach proved to be effective in addressing the inversion problem for the estimation of volcanic ash and SO2 cloud parameters, providing fast and reliable retrievals, which are important requirements during the volcanic crisis.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Hyperspectral sensors have become a standard technology used in the techniques of observation by satellite and aerial platform for observing the terrestrial ecosystem with particular interest in the detection and identification of minerals, vegetation, materials and artificial environments. The detection of real materials depends on the coverage spectral resolution and signal to noise ratio of the spectrometer itself, as well as the density of the material and the absorption characteristics for the material in the region of wavelength measured. The signal to noise ratio in particular is one of the parameters that need to be estimated to establish the quality of images acquired by these systems. In this contribution a method to estimate the Signal to Noise Ratio (SNR) for unsupervised hyperspectral images has been investigated. The method uses the computation of local means and local standard deviations of small homogeneous blocks in order to define respectively the average signal and the mean noise of the images. If the noise may be considered mainly addictive the local standard deviation may be considered as the mean noise of image. This method uses all the spatial information contained in the image scene giving a representative SNR of entire image. The technique has been engineered in IDL environment and applied to hyperspectral data of HYPER-SIMGA sensor, developed in the frame of AIRFIRE Project for wildfire detection by airborne remote sensing data. The SNR results point out that HYPER-SIMGA SWIR images are quite noisy and the spectral range that has to be taken into account for data analysis is from 1000 to 1700 nm.
    Description: Published
    Description: 1-18
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: open
    Keywords: Hypespectral SNR ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...