ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (1)
  • Geophysical Research Abstracts Vol. 20, EGU2018-8132, 2018 EGU General Assembly 2018  (1)
  • 1
    Publication Date: 2021-02-23
    Description: Campi Flegrei caldera (Southern Italy) is one of the most hazardous volcanic complexes in the world since it is located inside the densely inhabited urban district of Naples-Pozzuoli. In the past, the caldera has produced devastating to moderate eruptions and periodically undergoes from strong to minor uplift episodes, named “bradyseism”, almost always accompanied by seismic swarms. Starting from 2005 Campi Flegrei has undergone an unrest crisis, characterized by ground uplift, localized gas emissions and seismicity, often occurring in seismic swarms. As a consequence, the monitoring activities have been progressively increasing, producing a huge amount of data, difficult to manage and match. GIS (Geographical Information System) represents a potent tool to manage great quantity of data, coming from different disciplines. In this study, we show two GIS technology applications to the seismic catalogue of Campi Flegrei. In the first one, a high-quality dataset is extracted from the GeoDatabase addressed to seismological studies that require high precision earthquake locations. In the second application, GIS are used to extract, visualize and analyse the typical seismic swarms of Campi Flegrei. Moreover, density and seismic moment distribution maps were generated for these swarms. In the last application, the GIS allow to highlight a clear variation in the temporal trend of the seismic swarms at Campi Flegrei.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-27
    Description: The Campi Flegrei volcanic area (Italy) is part of the Neapolitan volcanic district, a high volcanic risk area where population and human activities are exposed. It is monitored by INGV multi-platform surveillance networks systems. In this work we performed a comparison of the surface temperature in volcanic areas between satellite imagery in the Thermal Infrared (TIR) bandwidth and infrared thermal scenes acquired by ground cameras network (TIRNet). TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR LANDSAT8 data is 100 m and ASTER resolution is 90 m. Temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV-Osservatorio Vesuviano for long-term volcanic surveillance of Campi Flegrei caldera through the acquisition of thermal infrared images. The system is currently composed of 5 permanent stations equipped with FLIR A645SC cameras using a 640x480 resolution IR sensor. Acquisitions and data transmission are managed remotely through technology specially developed at INGV laboratories in Naples. To improve the systematic use of satellite data in the monitoring procedures of Volcanic Observatories, a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) two parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally acquire scenes of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras scenes, it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been created to select polygonal areas corresponding only to the cells containing the georeferenced TIR images acquired by different TIRnet stations. The surface temperature images retrieved by ASTER and LANDSAT data, have been georeferenced and resampled in cells of 30x30 with a careful control in maintaining the original cell values. The results show a good correspondence between trends of surface ground temperatures and satellite temperatures. This allow to calibrate the surface temperatures of the satellite imagery and to extend the area of analysis of thermal anomalies in the Campi Flegrei caldera. The effectiveness of this methodology allow to integrate the temperature data acquired by TIRNet with the satellite temperature data acquiredbefore the installation of TIRNet ground network.
    Description: Published
    Description: Vienna
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 5IT. Osservazioni satellitari
    Keywords: Remote Sensing ; Thermal anomalies ; Infrared camera network
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...