ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (6)
  • Copernicus  (5)
  • 1
    Publication Date: 2016-08-23
    Description: The Mesozoic plate tectonic history of Gondwana-derived crustal blocks of the Tibetan Plateau is hotly debated, but so far, paleomagnetic constraints quantifying their paleolatitude drift history remain sparse. Here, we compile existing data published mainly in Chinese literature and provide a new, high-quality, well-dated paleomagnetic pole from the ca. 180 Ma Sangri Group volcanic rocks of the Lhasa terrane that yields a paleolatitude of 3.7°S ± 3.4°. This new pole confirms a trend in the data that suggests that Lhasa drifted away from Gondwana in Late Triassic time, instead of Permian time as widely perceived. A total northward drift of ~4500 km between ca. 220 and ca. 130 Ma yields an average south-north plate motion rate of 5 cm/yr. Our results are consistent with either an Indian or an Australian provenance of Lhasa.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-23
    Description: Suprasubduction zone ophiolites are relics of oceanic upper plate forearcs and are typically preserved as discontinuous belts with discrete massifs along suture zones. Ophiolites usually contain an incomplete condensed section compared to average modern oceanic lithosphere. The incompleteness and discontinuity of ophiolites are frequently attributed to dismemberment, but tectonic causes remain poorly constrained. Here we show new paleomagnetic and field geological evidence for the preservation of extensional detachment faults that thinned and dismembered the south Tibetan ophiolite belt during the Early Cretaceous. Similar to those documented in modern slow- and ultraslow-spreading ridges, these detachments exhumed lithospheric mantle, and subophiolitic mélange, to the seafloor, which became unconformably covered by Asia-derived forearc strata. We call this mechanism forearc hyperextension, whereby widespread detachment faults accommodate upper plate extension above a subduction zone. We propose that hyperextension is the key mechanism responsible for dismemberment of the south Tibetan ophiolitic belt shortly after its magmatic accretion.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-20
    Description: The Arabia-Eurasia collision has been linked to global cooling, the slowing of Africa, Mediterranean extension, the rifting of the Red Sea, an increase in exhumation and sedimentation on the Eurasian plate, and the slowing and deformation of the Arabian plate. Collision age estimates range from the Late Cretaceous to Pliocene, with most estimates between 35 and 20 Ma. We assess the consequences of these collision ages on the magnitude and location of continental consumption by compiling all documented shortening within the region, and integrating this with plate kinematic reconstructions. Shortening estimates across the orogen allow for ~350 km of Neogene upper crustal contraction, necessitating collision by 20 Ma. A 35 Ma collision requires additional subduction of ~400–600 km of Arabian continental crust. Using the Oman ophiolite as an analogue, ophiolitic fragments preserved along the Zagros suture zone permit ~180 km of subduction of the Arabian continental margin plus overlying ophiolites. Wholesale subduction of this more dense continental margin plus ophiolites would reconstruct ~400–500 km of postcollisional Arabia-Eurasia convergence, consistent with a ca. 27 Ma initial collision age. This younger Arabia-Eurasia collision suggests a noncollisional mechanism for the slowing of Africa, and associated extension.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-02
    Description: Models of arc-continent accretion often assume that the period of subduction of continental lithosphere before plate boundary reorganization is fairly short lived, yet the timescale of this period is poorly constrained by observations in the geologic record. The island of Timor is the uplifted accretionary complex resulting from the active collision of the Banda volcanic arc with the Australian continental margin. The exposure of underplated and exhumed Australian strata on Timor allows for the characterization of the structural history of accretion of uppermost Australian crust and the quantification of subduction of its original continental lithospheric underpinnings. New structural mapping in East Timor (Timor-Leste) reveals that duplexing of a 2-km-thick package of Australian continental strata has built the majority of the structural elevation of the Timor orogen. Coupling new structural observations with previous thermochronology results reveals the sequence of deformation within the orogen, the presence of subsurface duplexing below the hinterland slate belt, and motion along a foreland subsurface thrust ramp. Construction of balanced cross sections allows for the quantification of the amount of shortening in the orogen, and from that, the length of the subducted Australian continental lithosphere. Two balanced cross sections in East Timor reveal 326–362 km of shortening and that 215–229 km of Australian continental lithosphere have been subducted below the Banda forearc. These results highlight the fact that considerable amounts of continental lithosphere can be subducted while accreting only a thin section of uppermost crust. Continental subduction may have been favorable at Timor because of fast subduction rates, old oceanic crust at the consumed Australian margin, and subduction of some length of transitional crust. These results provide quantitative constraints for future numerical modeling of the geodynamics of continental subduction and arc-continent collision.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-24
    Description: Most mountain belts on Earth show some degree of curvature in plan view, from a slight bend to horseshoe shapes. Such curvatures may occur on different scales, from individual thrust sheets to entire plate boundaries. Curvature may be acquired by vertical-axis rotation during or after orogenesis, or reflect primary lateral variations in shortening directions or physiographical features. Quantifying the amount of vertical-axis rotations of plan-view curvature is therefore helpful to our understanding of orogenesis, geodynamics, and paleogeography. The orocline test assesses to what extent vertical-axis rotations have played a role in the acquisition of an orogen’s curvature. The test quantifies through linear regression the relationships between changes in structural trends and the orientations of a geologic fabric. However, the current mathematical approaches to the orocline test show potential biases. In this paper we aim to overcome such biases by developing a novel orocline test that applies total least squares (TLS) regression combined with a novel approach to bootstrapping. This bootstrap TLS orocline test can be used with all types of directional data acquired from structural geology, paleomagnetism, or sedimentology. It quantifies, for the first time, secondary curvature with confidence bands. We also provide several graphical and analytical tests to evaluate the statistical significance of the result. An open source online application implementing this method is available for use on www.paleomagnetism.org . We illustrate the use of the methodology by reanalyzing published data sets from two well-known oroclines in the Cantrabrian (northwest Iberia) and Aegean (Greece) regions.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-25
    Description: The Aegean–west Anatolian orocline formed due to Neogene opposite rotations of its western and eastern limbs during opening of the Aegean back-arc basin. Stretching lineations in exhumed metamorphic complexes in this basin mimic the regional vertical-axis rotation patterns and suggest that the oppositely rotating domains are sharply bounded along a Mid-Cycladic lineament, the tectonic nature of which is enigmatic. Some have proposed this lineament to be an extensional fault accommodating orogen-parallel extension, while others have considered it to be a transform fault. The island of Paros hosts the only exposure of the E- to NE-trending lineations characterizing the NW Cyclades and the N-trending lineations of the SE Cyclades. Here, we show new paleomagnetic results from isotropic, ca. 16 Ma granitoids that intruded both domains and demonstrate that the trend difference resulted from post–16 Ma ~90° clockwise and 10° counterclockwise rotation of the NW and SE blocks, respectively. We interpret the semiductile to brittle, low-angle, SE-dipping Elitas shear zone that accommodated this rotation difference to reflect the Mid-Cycladic lineament. We conclude a two-stage exhumation history for Paros that is consistent with regional Aegean reconstructions. Between ca. 23 and 16 Ma, the metamorphic rocks of Paros were exhumed from amphibolite-facies to greenschist-facies conditions along a top-to-the-N detachment. The Elitas shear zone then started to exhume the northwestern, clockwise-rotating domain from below the southeastern, counterclockwise rotating domain since 16 Ma. From this, we infer that the Mid-Cycladic lineament is an extensional shear zone, consistent with geometric predictions that Aegean oroclinal bending was accommodated by orogen-normal and orogen-parallel extension.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-28
    Description: The first and foremost boundary condition for kinematic reconstructions of the Mediterranean region is the relative motion between Africa and Eurasia, constrained through reconstructions of the Atlantic Ocean. The Adria continental block is in a downgoing plate position relative to the strongly curved Central Mediterranean subduction-related orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides-Hellenides. It is connected to the African plate through the Ionian Basin, likely with lower Mesozoic oceanic lithosphere. If the relative motion of Adria vs. Africa is known, its position relative to Eurasia can be constrained through the plate circuit, and hard boundary conditions for the reconstruction of the complex kinematic history of the Mediterranean are obtained. Kinematic reconstructions for the Neogene motion of Adria vs. Africa interpreted from the Alps, and from Ionian Basin and its surroundings, however, lead to scenarios involving vertical axis rotation predictions ranging from ∼0 to 20° counterclockwise. Here, we provide six new paleomagnetic poles from Adria, derived from the Lower Cretaceous to Upper Miocene carbonatic units of the Apulian peninsula (southern Italy). These, in combination with published poles from the Po Plain (Italy), the Istria peninsula (Croatia), and the Gargano promontory (Italy), document a post-Eocene 9.5 ± 8.7° counterclockwise vertical axis rotation of Adria. This result provides no support for models invoking significant Africa–Adria rotation differences between the Early Cretaceous and Eocene. The Alpine and Ionian Basin end-member kinematic models are both permitted within the documented rotation range, yet are mutually exclusive. This apparent enigma can be solved only if one or more of the following conditions (requiring future research) are satisfied: (i) Neogene shortening in the western Alps has been significantly underestimated (by as much as 150 km); (ii) Neogene extension in the Ionian Basin has been significantly underestimated (by as much as 420 km); and/or (iii) a major sinistral strike-slip zone has decoupled North and South Adria in Neogene time. Here we present five alternative reconstructions of Adria at 20 Ma that highlight the enigma: they fit the inferred rotation pattern from this study or previously proposed kinematic reconstructions from the surrounding.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-02
    Description: The first and foremost boundary condition for kinematic reconstructions of the Mediterranean region is the relative motion between Africa and Eurasia, constrained through reconstructions of the Atlantic Ocean. The Adria continental block is in a downgoing plate position relative to the strongly curved central Mediterranean subduction-related orogens, and forms the foreland of the Apennines, Alps, Dinarides, and Albanides–Hellenides. It is connected to the African plate through the Ionian Basin, likely with Lower Mesozoic oceanic lithosphere. If the relative motion of Adria versus Africa is known, its position relative to Eurasia can be constrained through a plate circuit, thus allowing robust boundary conditions for the reconstruction of the complex kinematic history of the Mediterranean region. Based on kinematic reconstructions for the Neogene motion of Adria versus Africa, as interpreted from the Alps and from Ionian Basin and its surrounding areas, it has been suggested that Adria underwent counterclockwise (ccw) vertical axis rotations ranging from ~ 0 to 20°. Here, we provide six new paleomagnetic poles from Adria, derived from the Lower Cretaceous to Upper Miocene carbonatic units of the Apulian peninsula (southern Italy). These, in combination with published poles from the Po Plain (Italy), the Istrian peninsula (Croatia), and the Gargano promontory (Italy), document a post-Eocene 9.8 ± 9.5° counterclockwise vertical axis rotation of Adria. Our results do not show evidence of significant Africa–Adria rotation between the Early Cretaceous and Eocene. Models based on reconstructions of the Alps, invoking 17° ccw rotation, and based on the Ionian Basin, invoking 2° ccw rotation, are both permitted within the documented rotation range, yet are mutually exclusive. This apparent enigma could possibly be solved only if one or more of the following conditions are satisfied: (i) Neogene shortening in the western Alps has been significantly underestimated (by as much as 150 km); (ii) Neogene extension in the Ionian Basin has been significantly underestimated (by as much as 420 km); and/or (iii) a major sinistral strike-slip zone has decoupled northern and southern Adria in Neogene time. Here we present five alternative reconstructions of Adria at 20 Ma, highlighting the kinematic uncertainties, and satisfying the inferred rotation pattern from this study and/or from previously proposed kinematic reconstructions.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-21
    Description: Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art of plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate global geographical reconstructions that are suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth–age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicates that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping the reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain geographical features as newly generated boundary conditions can be easily incorporated in different model simulations. An example is presented, covering a late Eocene reconstruction (38 Ma), a MatLab script used to perform the procedure is provided in the Supplement.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-18
    Description: The 58–51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C) up to the Early Eocene Climate Optimum (EECO, 52.9–50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes. To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM). We show that CO2 production may have reached up to 1.55 × 1018 mol Ma−1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India-Asia plate convergence increase. The subduction of thick Greater Indian continental margin carbonate sediments at ~ 55–50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma−1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modeling demonstrates that timing of maximum CO2 release only partially fits with the EECO, and that corresponding maximum pCO2 values (750 ppm) and surface warming (+2 °C) do not reach values inferred from geochemical proxies, a result consistent with conclusions arising from modeling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming. Other commonly cited sources of excess CO2 such as enhanced igneous province volcanism also appear to be up to 1 order of magnitude below fluxes required by the model to fit with proxy data of pCO2 and temperature at that time. An alternate explanation may be that CO2 consumption, a key parameter of the long-term atmospheric pCO2 balance, may have been lower than suggested by modeling. These results call for a better calibration of early Cenozoic weathering rates.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...