ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-26
    Description: The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in the V3 aerosol retrieval algorithm include (1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, (2) detailed characterization of gas absorption by adding NO2 and H2O to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, (3) new bidirectional reflectance distribution function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, (4) a new version of the extraterrestrial solar flux spectrum, and (5) a new temperature correction procedure of both direct Sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440 nm SSA, while for longer wavelengths V3 SSAs are systematically higher than those of V2, with the largest mean difference at 675 nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675 nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675 nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols, which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurement scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging, which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to an extended range of scattering angles, HYB SSA retrievals for dust aerosols exhibit smaller variability with solar zenith angles (SZAs) than those of almucantar (ALM), which allows extension of HYB SSA retrievals to SZAs less than 50∘ to as small as 25∘. The comparison of SSA retrievals from closely time-matched HYB and ALM scans in the 50 to 75∘ SZA range showed good agreement with the differences below ∼0.005. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrieval uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics, standard deviation (labeled U27) is used as a proxy for estimated uncertainty, and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan databases by binning U27s in AOD (440 nm), Angström exponent (AE, 440–870 nm), and SSA (440, 675, 870, 1020 nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Description: A Note on the Chemical Composition of Nuffieldite Solid-Solution From Sulphide Mineralizations in the Western Carpathians, SlovakiaThe chemistry of the rare sulphosalt nuffieldite from three localities in Slovakia is examined. Nuffieldite is a part of a complex association of Bi sulphosalts accompanying tetrahedrite mineralization in some sulphide deposits in the Western Carpathians. Cu + Pb = (Bi, Sb) + vac. substitution in nuffieldite and the general formula Cu1+xPb2Bi2(PbxSbyBi1-x-y)S7where 0 〈 x 〈 0.34; and 0.32 〈 y 〈 0.45 are confirmed. Decreasing Sb content with increasing copper content indicates a predominant substitution of Bi by Sb in nuffieldite.
    Print ISSN: 1899-8291
    Electronic ISSN: 1899-8526
    Topics: Geosciences
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-29
    Description: Debt, as one of basic human relations, has profound effects on economic growth. Debt accumulation in the global economy was modeled by the stochastic logistic equation reflecting causality between leverage and its rate of change. The model, identifying interactions and feedbacks in aggregate behaviour of creditors and borrowers, addressed various issues of macrofinancial stability. Qualitatively diverse patterns, including the Wicksellian (normal) market, the Minsky financial bubbles and the Fisherian debt-deflation, were discerned by appropriate combinations of rates of return, spreads and leverage. The Kolmogorov-Fokker-Plank equation was used to find out the stationary gamma distribution of leverage that was instrumental for the evaluation of appropriate failure and survival functions. Two patterns corresponding to different forms of a stationary gamma distribution were recognized in the long run leverage dynamics and were simulated as scenarios of a possible system evolution. In particular, empirically parameterized asymptotical distribution indicated excessive leverage and unsustainable global debt accumulation. It underlined the necessity of comprehensive reforms aiming to decrease uncertainty, debt and leverage. Assuming these reforms were successfully implemented, global leverage distributions would have converged in the long run to a peaked gamma distribution with the mode identical to the anchor leverage. The latter corresponded to a balanced long run debt demand and supply, hence to fairly evaluated financial assets fully collateralized by real resources. A particular case of macrofinancial Tobin’s q-coefficients following the Ornstein-Ulenbeck process was studied to evaluate a reasonable range of squeezing the bloated world finance. The model was verified on data published by the IMF in Global Financial Stability Reports for the period 2003–2013.
    Print ISSN: 2194-6124
    Electronic ISSN: 1935-1704
    Topics: Economics
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-19
    Description: Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-13
    Description: Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solar radiation at the AERONET site in Tomsk and satellite observations. The data were analysed using multi-year (2003–2013) measurements of aerosol characteristics under background conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. (ordinary smoke). In June–August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95 ± 0.86, about a factor of 6 larger than background values (0.16 ± 0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24–28 July and reached 3–5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of ∼ 0.96 in the entire wavelength range of 440–1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm)  =  0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of fine-mode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD. The calculations of the average radiative effects of smoke and background aerosol are presented. Compared to background conditions and ordinary smoke, under the extreme smoke conditions the cooling effect of aerosol considerably intensifies: direct radiative effects (DRE) at the bottom (BOA) and at the top of the atmosphere (TOA) are −13, −35, and −60 W m−2 and −5, −14, and −35 W m−2 respectively. The maximal values of DRE were observed on 27 July (AOD(500 nm)  =  3.5), when DRE(BOA) reached −150 W m−2, while DRE(TOA) and DRE of the atmosphere were −75 W m−2. During the fire event in summer 2012 the direct radiative effect efficiency varied in range: at the BOA it was −80–−40 W m−2, at the TOA it was −50–−20 W m−2 and in the atmosphere it was −35–−20 W m−2.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-07
    Description: Aerosol volume size distribution (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) campaigns conducted in Maryland, California, Texas and Colorado from 2011 to 2014. These VSD retrievals from the field campaigns were used to make comparisons with near-simultaneous in situ samples from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (±1 h) measurements there were a total of 91 profile-averaged fine-mode size distributions acquired with the LARGE ultra-high sensitivity aerosol spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine-mode parameters, the radius of peak concentration (rpeak_conc) and the VSD fine-mode width (widthpeak_conc). The AERONET retrievals of these VSD fine-mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (relative humidity; RH 
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-01-01
    Description: Mineralogy and Geochemistry of the Nižná Boca Sb-Au Hydrothermal Ore Deposit (Western Carpathians, Slovakia)Samples from hydrothermal Sb-Au mineralization in the area SE of Nižná Boca village in the N&iAzke Tatry Mountains were investigated using a variety of geochemical and mineralogical methods. Ore minerals typically occur in N-S striking quartz-carbonate veins hosted by an I-type biotite granodiorite to tonalite of Variscan Age (the Ďumbier Type). Paragenetic associations in the deposit are comparable to other mineralizations of the same type in the Ďumbierske Nízke Tatry Mountains. A quartz-arsenopyrite, pyrite stage of mineralization is the oldest with a calculated temperature of formation of about 445°C. It is followed by a quartz-carbonate-stibnite, zinkenite stage and, in turn, a quartz-carbonate-sphalerite-galena, boulangerite-gold stage. The gold typically contains between 9-18 wt.% Ag regardless of mineral association. No evidence for further generations of gold was found although it is possible that some gold was remobilized from the structure of the auriferous arsenopyrite. The Au and Ag content of the bulk ore ranges from 0.53 g.t-1to 20.2 g.t-1and from 0.9 g.t-1to 31.2 g.t-1, respectively. A tetrahedrite-chalcopyrite stage is followed by a barite-hematite stage - the youngest assemblage in the deposit. Fluid inclusions from the first mineralization stage are usually less than 3 μm in size and contain less than 3.6 wt.% CO2; salinity, density and homogenization temperature range from 2.7-16.3 wt.% NaCl(eq), 0.85-1.03 g.cm-1and 128-280°C, respectively.
    Print ISSN: 1899-8291
    Electronic ISSN: 1899-8526
    Topics: Geosciences
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-11
    Description: The Aerosol Robotic Network (AERONET) has provided highly accurate, ground-truth measurements of the aerosol optical depth (AOD) using Cimel Electronique Sun–sky radiometers for more than 25 years. In Version 2 (V2) of the AERONET database, the near-real-time AOD was semiautomatically quality controlled utilizing mainly cloud-screening methodology, while additional AOD data contaminated by clouds or affected by instrument anomalies were removed manually before attaining quality-assured status (Level 2.0). The large growth in the number of AERONET sites over the past 25 years resulted in significant burden to the manual quality control of millions of measurements in a consistent manner. The AERONET Version 3 (V3) algorithm provides fully automatic cloud screening and instrument anomaly quality controls. All of these new algorithm updates apply to near-real-time data as well as post-field-deployment processed data, and AERONET reprocessed the database in 2018. A full algorithm redevelopment provided the opportunity to improve data inputs and corrections such as unique filter-specific temperature characterizations for all visible and near-infrared wavelengths, updated gaseous and water vapor absorption coefficients, and ancillary data sets. The Level 2.0 AOD quality-assured data set is now available within a month after post-field calibration, reducing the lag time from up to several months. Near-real-time estimated uncertainty is determined using data qualified as V3 Level 2.0 AOD and considering the difference between the AOD computed with the pre-field calibration and AOD computed with pre-field and post-field calibration. This assessment provides a near-real-time uncertainty estimate for which average differences of AOD suggest a +0.02 bias and one sigma uncertainty of 0.02, spectrally, but the bias and uncertainty can be significantly larger for specific instrument deployments. Long-term monthly averages analyzed for the entire V3 and V2 databases produced average differences (V3–V2) of +0.002 with a ±0.02 SD (standard deviation), yet monthly averages calculated using time-matched observations in both databases were analyzed to compute an average difference of −0.002 with a ±0.004 SD. The high statistical agreement in multiyear monthly averaged AOD validates the advanced automatic data quality control algorithms and suggests that migrating research to the V3 database will corroborate most V2 research conclusions and likely lead to more accurate results in some cases.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-15
    Description: The AErosol RObotic NETwork (AERONET) program over the past 24 years has provided highly accurate remote sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution that includes all continents and many island sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial resolution ground-based remote sensing networks. An effort to address this need resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote sensing comparison and analysis of local to meso-scale variability of aerosol properties. This paper describes the networks that that have contributed and will continue to contribute to that body of research. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-28
    Description: Atmospheric sea salt plays important roles in marine cloud formation and atmospheric chemistry. We performed an integrated analysis of NASA GEOS model simulations run with the GOCART aerosol module, in situ measurements from the PALMS and SAGA instruments obtained during the NASA ATom campaign, and aerosol optical depth (AOD) measurements from AERONET Marine Aerosol Network (MAN) sun photometers and from MODIS satellite observations to better constrain sea salt in the marine atmosphere. ATom measurements and GEOS model simulation both show that sea salt concentrations over the Pacific and Atlantic oceans have a strong vertical gradient, varying up to four orders of magnitude from the marine boundary layer to free troposphere. The modeled residence times suggest that the lifetime of sea salt particles with dry diameter less than 3 μm is largely controlled by wet removal, followed next by turbulent process. During both boreal summer and winter, the GEOS simulated sea salt mass mixing ratios agree with SAGA measurements in the marine boundary layer (MBL) and with PALMS measurements above the MBL. However, comparison of AOD from GEOS with AERONET/MAN and MODIS aerosol retrievals indicated that the model underestimated AOD over the oceans where sea salt dominates. The apparent discrepancy of slightly overpredicted concentration and large underpredicted AOD could not be explained by biases in the model RH, which was found to be comparable to or larger than the in-situ measurements. This conundrum is at least partially explained by the sea salt size distribution; where the GEOS simulation has much less sea salt percentage-wise in the smaller particles than was observed by PALMS. Model sensitivity experiments indicated that the simulated sea salt is better correlated with measurements when the sea salt emission is calculated based on the friction velocity and with consideration of sea surface temperature dependence than that parameterized with the 10-m winds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...