ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-09-01
    Description: Continuous lacustrine deposits of the Funza-II core from the Bogotá basin, Colombia (5°N74°W) record late Pleistocene climatic variations, providing an opportunity to assess the influence of glacial–interglacial climate changes on alpine ecosystems in equatorial South America. Biogeochemical response of this tropical alpine system to climate change was inferred from changes in elemental concentrations and ratios and isotopic signatures in the upper 120 m of the lacustrine Funza core.Values of δ13Corg exhibit eight abrupt, positive shifts that are thought to reflect rapid expansions of C4 grasses in the tropical Andes and algal blooms. One of these excursions, interpreted to correspond to C4 vegetation expansion, occurred in sediments accumulated during the last glaciation (∼30,000–50,000 yr B.P.) and implies a downslope shift of the upper Andean treeline, regardless of prevailing temperatures.Sedimentary carbon/sulfur ratios are low and indicate significant sequestering of sulfur. Monosulfides are the dominant constituent of sedimentary sulfur during relatively humid intervals, when increased supply of iron caused by enhanced weathering favored the formation of monosulfide minerals under strongly reducing conditions. In contrast, organosulfur compounds dominate the sedimentary sulfur-species in relatively drier intervals when mildly reducing conditions and limited iron input promoted the diagenetic incorporation of sulfur in organic matter. Dry events inferred from the sulfur record typically correlate with glacial maxima, whereas glacial terminations are usually associated with wet periods.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-10-01
    Description: A spectroscopy and isotope study has been performed on igneous sediments from Lake Hoare, a nearly isolated ecosystem in the Dry Valleys region of Antarctica. The mineralogy and chemistry of these sediments were studied in order to gain insights into the biogeochemical processes occurring in a permanently ice-covered lake and to assist in characterizing potential habitats for life in paleolakes on Mars. Obtaining visible/near-infrared, mid-infrared and Raman spectra of such sediments provides the ground truth needed for using reflectance, emittance and Raman spectroscopy for exploration of geology, and perhaps biology, on Mars. Samples measured in this study include a sediment from the ice surface, lake bottom sediment cores from oxic and anoxic zones of the lake and the magnetic fractions of two samples.These sediments are dominated by quartz, pyroxene, plagioclase and K-feldspar, but also contain calcite, organics, clays, sulphides and iron oxides/hydroxides that resulted from chemical and biological alteration processes. Chlorophyll-like bands are observed in the spectra of the sediment-mat layers on the surface of the lake bottom, especially in the deep anoxic region. Layers of high calcite concentration in the oxic sediments and layers of high pyrite concentration in the anoxic sediments are indicators of periods of active biogeochemical processing in the lake. Micro-Raman spectra revealed the presence of ~5 μm-sized pyrite deposits on the surface of quartz grains in the anoxic sediments. C, N and S isotope trends are compared with the chemistry and spectral properties. The δ13C and δ15N trends highlight the differences in the balance of microbial processes in the anoxic sediments versus the oxic sediments. The biogenic pyrite found in the sediments from the anoxic zone is associated with depleted δ34S values, high organic C levels and chlorophyll spectral bands and could be used as a potential biomarker mineral for paleolakes on Mars.
    Print ISSN: 1473-5504
    Electronic ISSN: 1475-3006
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...