ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: According to the theory of optimal nitrogen partitioning within a leaf, the chlorophyll (Chl) a/b ratio is expected to increase when leaf N content decreases. Here, we report the first empirical support for this prediction. The Chl a/b ratio increased while Chl content decreased in response to N limitation in photosynthetic cotyledons and leaves of seedlings of four tropical woody species in the Bignoniaceae. The responses of all four species were in the same direction, but differed in magnitude. For Tabebuia rosea, the species that exhibited the greatest increase in Chl a/b ratios (up to values of 5.9), detailed photosynthetic characteristics were also examined. Light and N availability were positively correlated with the light- and CO2-saturated photosynthetic O2 evolution rate, as well as with leaf carboxylation capacity (Vcmax) and electron transport rate (Vj). Severe N limitation and high light did not cause chronic photo-inhibition (i.e. no change in quantum yield or in dark-acclimated Fv/Fm). The observed change in the ratio of Vcmax to leaf N in response to N availability was consistent with likely functional reasons for change in the Chl a/b ratio. Adjustment of the Chl a/b ratio was apparently an integral feature of acclimation to high light conditions and low N availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...