ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of London  (3)
  • Blackwell Science Ltd  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 16 (2004), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Buoyancy controls the ability of magma to rise, its ascent rate and the style of the eruptions. Geophysical, geological and petrological data have been integrated to evaluate the buoyancy of magmas at Mt Etna. The density difference between host rocks and magmas is mainly related to the amount of H2O dissolved in the magma and to the bubble-liquid separation processes. In the depth interval 22–2 km b.s.l. highly hydrated (H2O ∼ 3%) basaltic magmas or mixtures of bubbles + liquid have positive buoyancy and rise rapidly. Conversely, bubble-depleted liquids, with an intermediate H2O content (∼ 1.5%), having neutral buoyancy, will spread out and form magmatic reservoirs at different depths until cooling/crystallization further modify composition and density. These different processes account for the magma compositions, location of magmatic reservoirs as determined by geophysical methods, and the complex eruptive cycles (slow effusions, fire fountains and Plinian eruptions) that have been observed in the history of the volcano.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-09
    Description: Mount Melbourne and Mount Rittmann are quiescent, although potentially explosive, alkaline volcanoes located 100 km apart in Northern Victoria Land quite close to three stations (Mario Zucchelli Station, Gondwana and Jang Bogo). The earliest investigations on Mount Melbourne started at the end of the 1960s; Mount Rittmann was discovered during the 1988–89 Italian campaign and knowledge of it is more limited due to the extensive ice cover. The first geophysical observations at Mount Melbourne were set up in 1988 by the Italian National Antarctic Research Programme (PNRA), which has recently funded new volcanological, geochemical and geophysical investigations on both volcanoes. Mount Melbourne and Mount Rittmann are active, and are characterized by fumaroles that are fed by volcanic fluid; their seismicity shows typical volcano signals, such as long-period events and tremor. Slow deformative phases have been recognized in the Mount Melbourne summit area. Future implementation of monitoring systems would help to improve our knowledge and enable near-real-time data to be acquired in order to track the evolution of these volcanoes. This would prove extremely useful in volcanic risk mitigation, considering that both Mount Melbourne and Mount Rittmann are potentially capable of producing major explosive activity with a possible risk to large and distant communities.
    Print ISSN: 0435-4052
    Electronic ISSN: 2041-4722
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-01
    Description: We review here data and information on Antarctic volcanism resulting from recent tephrostratigraphic investigations on marine cores. Records include deep drill cores recovered during oceanographic expeditions: DSDP, ODP and IODP drill cores recovered during ice-based and land-based international cooperative drilling programmes DVDP 15, MSSTS-1, CIROS-1 and CIROS-2, DVDP 15, CRP-1, CRP-2/2A and CRP-3, ANDRILL-MIS and ANDRILL-SMS, and shallow gravity and piston cores recovered in the Antarctic and sub-Antarctic oceans. We report on the identification of visible volcaniclastic horizons and, in particular, of primary tephra within the marine sequences. Where available, the results of analyses carried out on these products are presented. The volcanic material identified differs in its nature, composition and emplacement mechanisms. It was derived from different sources on the Antarctic continent and was emplaced over a wide time span.Marine sediments contain a more complete record of the explosive activity from Antarctic volcanoes and are complementary to those obtained by land-based studies. This record provides important information for volcanological reconstructions including approximate intensities and magnitudes of eruptions, and their duration, age and recurrence, as well as their eruptive dynamics. In addition, characterized tephra layers represent an invaluable chronological tool essential in establishing correlations between different archives and in synchronizing climate records.
    Print ISSN: 0435-4052
    Electronic ISSN: 2041-4722
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: We review here data and information on Antarctic volcanism resulting from recent tephrostratigraphic investigations on marine cores. Records include deep drill cores recovered during oceanographic expeditions: DSDP, ODP and IODP drill cores recovered during ice-based and land-based international cooperative drilling programmes DVDP 15, MSSTS-1, CIROS-1 and CIROS-2, DVDP 15, CRP-1, CRP-2/2A and CRP-3, ANDRILL-MIS and ANDRILL-SMS, and shallow gravity and piston cores recovered in the Antarctic and sub-Ant arctic oceans. We report on the identification of visible volcaniclastic horizons and, in particular, of primary tephra within the marine sequences. Where available, the results of analyses carried out on these products are presented. The volcanic material identified differs in its nature, composition and emplacement mechanisms. It was derived from different sources on the Antarctic continent and was emplaced over a wide time span. Marine sediments contain a more complete record of the explosive activity from Antarctic volcanoes and are complementary to those obtained by land-based studies. This record provides important information for volcanological reconstructions including approximate inten sities and magnitudes of eruptions, and their duration, age and recurrence, as well as their eruptive dynamics. In addition, characterized tephra layers represent an invaluable chronological tool essential in establishing correlations between different archives and in synchronizing climate records.
    Description: Published
    Description: 631-647
    Description: 1V. Storia eruttiva
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...