ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Eclogite facies carbonate rocks have been discovered associated with the granulite–eclogite transitional rocks within Bergen Arc system, Caledonian Orogen of western Norway. The local occurrences of marbles and calc-silicates are found subparallel to the mafic eclogite facies shear zones on Holsnøy Island. Marbles contain the assemblage calcite (Ca0.99Sr0.01CO3), calcian strontianite (Ca0.18−0.44Sr0.53−0.84CO3), clinopyroxene (Jd7−32), epidote/allanite (Ps0−33), titanite, garnet (Alm52−56Grs28−33Pyp11−16), barite (Ba0.90−0.99Sr0.01−0.10SO4), celestine (Sr0.67−0.98Ba0.01−0.23Ca0.01−0.11SO4), and one apparently homogeneous grain of intermediate composition (Ba0.49Ca0.01Sr0.50SO4). Adjacent eclogites have clinopyroxene with similar jadeite contents (Jd14−34) and similar garnet (Alm51−60Grs26−36Pyp8−14) compositions. The marbles have high contents of Sr (9500–11000 p.p.m) and Y (115–130 p.p.m). However, low concentrations of some key trace elements (110–160 p.p.m. Ba and 〈5 p.p.m. Nb) appear to indicate that the marble is not a metamorphosed carbonatite. The 87Sr/86Sr ratios range from 0.7051 to 0.7059. Field and petrological relationships suggest that metasomatic reactions and fluids played a significant role in producing and/or modifying the marbles. The breakdown of scapolite in the granulite into carbonates and sulphates during eclogite facies metamorphism may have contributed to the metasomatic formation of the marbles along shear zones.Fluids involved during subduction are an important catalyst for metamorphism and are recognized to have played a critical role in the localized transformation from granulite to eclogite in the Holsnøy Island area. Thermobarometry indicates 640–690 °C and 18–20 kbar for adjacent eclogites and temperatures of 580–650 °C for the calc-silicates. The marble assemblages are consistent with fluid that is dominantly comprised of H2O (XCO2 〈 0.03) under high-pressure conditions. Phase equilibria of the marbles constrain the fO2 of the fluids and imply oxidizing conditions of the deep crustal fluids. At present the source of the fluids remains unresolved. The results provide additional insights into the variable and evolving nature of fluids related to subduction and high-pressure metamorphism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 18 (2000), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Semi-pelitic rocks ranging in grade from the prehnite–pumpellyite to the greenschist facies from south-eastern Otago, New Zealand, have been investigated in order to evaluate the reactions leading to formation and breakdown of stilpnomelane. Detrital grains of mica and chlorite along with fine-grained authigenic illite and chlorite occur in lower-grade rocks with compactional fabric parallel to bedding. At higher grades, detrital grains have undergone dissolution, and metamorphic phyllosilicates have crystallized with preferred orientation (sub)parallel to bedding, leading to slaty cleavage. Stilpnomelane is found in metapelites of the pumpellyite–actinolite facies and the chlorite zone of the greenschist facies, but only rarely in the biotite zone of the greenschist facies. Illite or phengite is ubiquitous, whereas chlorite occurs only rarely with stilpnomelane upgrade of the pumpellyite-out isograd. Chemical and textural relationships suggest that stilpnomelane formed from chlorite, phengite, quartz, K-feldspar and iron oxides. Stilpnomelane was produced by grain-boundary replacement of chlorite and by precipitation from solution, overprinting earlier textures. Some relict 14 Å chlorite layers are observed by TEM to be in the process of transforming to 12 Å stilpnomelane layers. The AEM analyses show that Fe is strongly partitioned over Mg into stilpnomelane relative to chlorite (KD≈2.5) and into chlorite relative to phengite (KD≈1.9). Modified A′FM diagrams, projected from the measured phengite composition rather than from ideal KAl3Si3O10(OH)2, are used to elucidate reactions among chlorite, stilpnomelane, phengite and biotite. In addition to pressure, temperature and bulk rock composition, the stilpnomelane-in isograd is controlled by variations in K, Fe3+/Fe2+, O/OH and H2O contents, and the locus of the isograd is expected to vary in rocks of different oxidation states and permeabilities. Biotite, quartz and less phengitic muscovite form from stilpnomelane, chlorite and phengite in the biotite zone. Projection of bulk rock compositions from phengite, NaAlO2, SiO2 and H2O reveals that they lie close to the polyhedra defined by the A′FM minerals and albite. Other extended A′FM diagrams, such as one projected from phengite, NaAlO2, CaAl2O4, SiO2 and H2O, may prove useful in the evaluation of other low-grade assemblages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two-pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg-rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...