ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The differentiation of new vessels was induced by local applications of auxin to isolated pieces of turnip storage roots. This differentiation was compared in varied relative orientations of the location of auxin application, the shoot-root polarity and the direction of gravity. Vessel differentiation was restricted to the cambial region and its course was determined primarily by the location of auxin application and the original, determined polarity of the tissues. Within this framework, the course of vessel differentiation was significantly modified by gravity: individual vessels tended to curve downwards and to be concentrated on the lower half of the tissue. The results can be understood as an observable expression of an influence of gravity on auxin transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: At any given time, a vascular or land plant may be a colony of functional sectors, each consisting of a shoot and its associated roots. In most plants, however, the activity of the cambium can change the relative vascular contacts of neighbouring shoots. Vascular tissues can even differentiate along new orientations, forming contacts that change the sectorial structure of the plant. Such reoriented differentiation is induced by the same auxin from developing leaves as are other types of vascular differentiation. The occurrence of vascular reorientation is determined by two criteria: the presence of an auxin flow that exceeds the transport capacity of the tissues that follow the previous, established orientation and the availability of nearby channels that are not fully occupied, not‘protected’ by their own flow of auxin. These controls of vascular orientation suggest that neighbouring shoots (and neighbouring roots) compete with one another, by means of signals indicating their state and their environment, for vascular contacts with the rest of the plant. Such internal competition between genetically equivalent shoots is an adaptation to heterogeneous environments: it is the shoots in the best conditions available to the plant that receive the support of a greater part of the root system. The potential for changes of vascular contacts points to open problems and to neglected aspects of the role of the cambium in plant organization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Roots are known to respond to favourable nutrient conditions by increased initiation and growth of lateral roots. The problem studied here was to what extent does this local developmental response depend on the environments of other roots on the same plant. Such dependence could allow for an optimal allocation of resources required for root growth in unpredictable, heterogeneous soils. Pea seedlings (Pisum sativum var. arvense cv. Dun) were pruned and grown to have two equal root systems, each in an individual container. As expected, these roots responded by increased development to a wide range of nutrient solution concentrations. The local development of these roots, expressed by their dry weight, was a function of the relative rather than the absolute conditions in which they were grown: roots in a given environment developed more rapidly if other roots on the same plant were in poorer than if they were in richer nutrient conditions. The number of lateral initials doubled within 3d after the roots were exposed to optimal nutrient conditions, before any dry weight differences could be detected. This rapid root initiation was also a function of the conditions other roots of the same plant were in. These results mean that root development, and especially lateral root initiation, depends on the integrated effects of the local environment and the internal correlative relations between the roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Plants can complete an entire life cycle in uniform environments. This is evidence that while shoot apices reiterate leaf formation they also change as a function of their own development. These changes occur in individual apices rather than the plant as a whole, and they are most closely correlated with the number of nodes an apex has formed. Evidence about the mechanism of ‘node counting’ suggests a working hypothesis: apical transitions depend on cumulative information about the distances of an apex from the roots, rather than on any single, critical state. Studies of the ecological roles of plant size and age have neglected the physiological information about ‘node counting’. Yet it is evident in field conditions, especially in the morphological location of flowers on branches situated at different heights along the main axis. ‘Node counting’ affects flower formation, but as a component rather than sole determinant of apical differentiation it displays pronounced phenotypic plasticity. The ecological advantages of ‘node counting’ could include its being a basis for concurrent vegetative and reproductive development on the same plant. It also allows for environmental responses that are a function of the state of plant sectors without constraining the sizes of leaves and other organs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...