ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 47 (1996), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Rice systems in Asia have intensified rapidly in the past 30 years, and significant areas of irrigated lowland rice are now supporting two or three rice crops per year. Our objective was to compare the chemical composition of soil organic matter (SOM) from four fields with different histories of rice cropping intensity and soil submergence: (i) a single-crop rainfed, dryland rice system without soil submergence, (ii) an irrigated rice and soybean rotation, and irrigated (iii) double- or (iv) triple-crop rice systems in which soil remains submerged during much of the year. In all four soils, extracted mobile humic acid (MHA) and calcium humate (CaHA) fractions were of modern age by 14C-dating, and represented about 20% of total N and organic C. The MHA was enriched in N and hydrolysable amino acids (AA) compared with CaHA in all soils. With increased frequency of irrigated rice cropping, however, there was a large increase in phenolic content of SOM. We speculate that slower lignin decomposition caused by deficiency of O2 in submerged soil leads to incorporation of phenolic moieties into young SOM fractions. The increased phenolic character of these fractions may influence N cycling and the N supplying capacity of lowland soils supporting two or three annual crops of irrigated rice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: l3C–nuclear magnetic resonance (NMR) spectra taken using magic–angle spinning (MAS), cross polarization (CP) and with total suppression of side bands (TOSS) are reported for soils from two long–term field experiments. One set of soils was from the Broadbalk Experiment at Rothamsted, UK (monoculture of winter wheat since 1843) and the other was from the Lermarken site of the Askov Long–Term Experiment on Animal Manure and Mineral Fertilizers (arable rotation since 1894). At both sites soil samples were taken from three fertilizer treatments: nil, inorganic fertilizers, animal manure. Spectra were obtained from whole soil samples and from the size fractions clay (〈2 μrn), silt (2–20 μm) and, in some cases, sand (20–2000 μm).Comparison of the total strengths of the 13C–NMR signal for each size separate in relation to its total organic C content shows that clay, particularly, contains large percentages of C not detected by NMR because of the large magnetic susceptibilities of the soil minerals. It is proposed that the observed signals come from the more labile pools of soil organic matter (SOM), on the presumption that these pools are less closely associated with soil minerals and iron oxides and are likely to be less protected from microbial or enzymic decomposition.For both Rothamsted and Askov, functional groups in the 45–110 ppm region (N– and O–alkyls) dominate in the spectra for whole soils, with aromatics (110–160 ppm) and alkyls (0–45 ppm) signals being the next prominent. In the Askov whole soil samples 13C–NMR revealed no differences between nil, inorganic fertilizer and animal manure treatments but in the Rothamsted whole soil there were some small differences.Clay and silt fractions from Askov contain more alkyls and less aromatics than those from Rothamsted. For both sites clay in enriched in alkyls and depleted in aromatics relative to silt. Clay from Askov, but not Rothamsted, contains more N–alkyls (45–65 ppm) and less acetals (90–110 ppm) than silt. O–alkyls (65–90 ppm) account for more than 20% of the total signal in clay and silt from both sites. Fertilization regimes have not significantly affected the chemical composition of SOM associated with clay– and silt–sized fractions in the soils at either site. We conclude that the chemical composition of SOM is determined primarily by the interaction between the organisms responsible for decomposition and the mineral soil matrix rather than the nature of substrate input.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...