ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-22
    Description: BackgroundMicroorganisms govern important ecosystems processes, in particular the degradation of organic matter (OM). However, microorganisms are rarely considered in efforts to monitor ecosystem health and functioning. Evidence suggests that environmental perturbations can adversely affect microbial communities and their ability to use available substrates. However, whether impacted microbial efficiencies in extracting and utilizing the available resources (resource niche breadth) translate to changes in OM degradation in natural systems remains poorly understood.MethodsHere we evaluated effects of differences in OM related to agricultural land use (OM derived from ditches adjacent to grasslands, bulb fields and a pristine dune area) on microbial functioning. We specifically assessed (1) resource niche breadths of microbial communities during initial community assembly in laboratory microcosms and already established natural communities, and (2) how changes in community resource niche breadth translates to the degradation of natural OM.ResultsA disparity existed between microbial resource niche breadth in laboratory incubations and natural microbial communities. Resource utilization and niche breadth of natural microbial communities was observed to be constrained in drainage ditches adjacent to agricultural fields. This outcome coincides with retarded degradation of natural OM collected from ditches adjacent to hyacinth bulb fields. Microbial communities in bulb field ditches further showed functional redundancy when offered grassland OM of seemingly higher substrate quality.DiscussionResults presented in this study suggest that agricultural practices can impose constraints on microbial functional diversity by reducing OM resource quality, which can subsequently translate to confined microbial resource niche differentiation and reduced organic matter degradation rates. This hints that assessments of actual microbial resource utilization and niche differentiation could potentially be used to assess the ecological health and functioning of natural communities.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Krol, L., Gorsich, E. E., Hunting, E. R., Govender, D., van Bodegom, P. M., & Schrama, M. Eutrophication governs predator-prey interactions and temperature effects in Aedes aegypti populations. Parasites & Vectors, 12(1), (2019):179, doi:10.1186/s13071-019-3431-x.
    Description: Background Mosquito population dynamics are driven by large-scale (e.g. climatological) and small-scale (e.g. ecological) factors. While these factors are known to independently influence mosquito populations, it remains uncertain how drivers that simultaneously operate under natural conditions interact to influence mosquito populations. We, therefore, developed a well-controlled outdoor experiment to assess the interactive effects of two ecological drivers, predation and nutrient availability, on mosquito life history traits under multiple temperature regimes. Methods We conducted a temperature-controlled mesocosm experiment in Kruger National Park, South Africa, with the yellow fever mosquito, Aedes aegypti. We investigated how larval survival, emergence and development rates were impacted by the presence of a locally-common invertebrate predator (backswimmers Anisops varia Fieber (Notonectidae: Hemiptera), nutrient availability (oligotrophic vs eutrophic, reflecting field conditions), water temperature, and interactions between each driver. Results We observed that the effects of predation and temperature both depended on eutrophication. Predation caused lower adult emergence in oligotrophic conditions but higher emergence under eutrophic conditions. Higher temperatures caused faster larval development rates in eutrophic but not oligotrophic conditions. Conclusions Our study shows that ecological bottom-up and top-down drivers strongly and interactively govern mosquito life history traits for Ae. aegypti populations. Specifically, we show that eutrophication can inversely affect predator–prey interactions and mediate the effect of temperature on mosquito survival and development rates. Hence, our results suggest that nutrient pollution can overrule biological constraints on natural mosquito populations and highlights the importance of studying multiple factors.
    Description: This study was supported by the Gratama Fund, Grant Number 2016.08, which was awarded to MS, supported by the Uyttenboogaart-Eliasen foundation for comparative entomology, Grant No. SUB.2016.12.08 and the RCN-IDEAS grant which was awarded to EEG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Keywords: Ecological drivers ; Vector-borne ; Anthropogenic pressures ; Interaction effects ; Temperature ; Biodiversity decline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...