ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (20)
  • Annual Reviews  (2)
Collection
Keywords
  • 1
    Publication Date: 2023-02-24
    Keywords: Acoustic Doppler Current Profiler; ADCP; Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; LATITUDE; LONGITUDE; Point Sur; PS99A6; PS99A6_00451; Shipboard Acoustic Doppler Current Profiling (SADCP); Ship velocity, absolute east-west, standard deviation; Ship velocity, absolute east-west components means; Ship velocity, absolute north-south components mean; Ship velocity, absolute north-south standard deviation; Temperature, technical; Temperature, technical, standard deviation; WOCE; World Ocean Circulation Experiment
    Type: Dataset
    Format: text/tab-separated-values, 8236 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-14
    Keywords: Calcium carbonate production of carbon; Calcium carbonate production of carbon, standard deviation; Coccolithophoridae, total; Cruise/expedition; DATE/TIME; DEPTH, water; Emiliania huxleyi; Incubation duration; LATITUDE; LONGITUDE; Method comment; Ocean and sea region; Percentage; Primary production of carbon; Primary production of carbon, standard deviation; Principal investigator; Reference/source; Station label; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 35037 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gao, Guang; Jin, Peng; Liu, Nana; Li, Futian; Tong, Shanying; Hutchins, David A; Gao, Kunshan (2017): The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and p CO 2 in the northern South China Sea. Marine Pollution Bulletin, 118(1-2), 213-220, https://doi.org/10.1016/j.marpolbul.2017.02.063
    Publication Date: 2024-03-15
    Description: We conducted shipboard microcosm experiments at both off-shore (SEATS) and near-shore (D001) stations in the northern South China Sea (NSCS) under three treatments, low temperature and low pCO2 (LTLC), high temperature and low pCO2 (HTLC), and high temperature and high pCO2 (HTHC). Biomass of phytoplankton at both stations were enhanced by HT. HTHC did not affect phytoplankton biomass at station D001 but decreased it at station SEATS. HT alone increased net primary productivity by 234% at station SEATS and by 67% at station D001 but the stimulating effect disappeared when HC was combined. HT also increased respiration rate by 236% at station SEATS and by 87% at station D001 whereas HTHC reduced it by 61% at station SEATS and did not affect it at station D001. Overall, our findings indicate that the positive effect of ocean warming on phytoplankton assemblages in NSCS could be damped or offset by ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); D001; Entire community; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Primary production/Photosynthesis; Primary production of carbon; Primary production of carbon, standard deviation; Primary production of carbon per chlorophyll a; Respiration; Respiration/net photosynthesis ratio; Respiration/net photosynthesis ratio, standard deviation; Respiration rate, carbon; Respiration rate, carbon, per chlorophyll a; Respiration rate, carbon dioxide, standard deviation; Salinity; SEATS; Station label; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 316 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. While short‐term ocean acidification effects on calcification and other properties have been examined in a variety of coccolithophore species, long‐term adaptive responses have scarcely been documented, other than for the single species Emiliania huxleyi . Here, we investigated the effects of ocean acidification on another ecologically important coccolithophore species, Gephyrocapsa oceanica, following 1,000 generations of growth under elevated CO2 conditions (1,000 μatm). High CO2‐selected populations exhibited reduced growth rates and enhanced particulate organic carbon (POC ) and nitrogen (PON ) production, relative to populations selected under ambient CO2 (400 μatm). Particulate inorganic carbon (PIC ) and PIC /POC ratios decreased progressively throughout the selection period in high CO2‐selected cell lines. All of these trait changes persisted when high CO2‐grown populations were moved back to ambient CO2 conditions for about 10 generations. The results suggest that the calcification of some coccolithophores may be more heavily impaired by ocean acidification than previously predicted based on short‐term studies, with potentially large implications for the ocean's carbon cycle under accelerating anthropogenic influences.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbon/Nitrogen ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Day of experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Nitrogen, organic, particulate, per cell; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; pH; pH, standard deviation; Phytoplankton; Potentiometric; Registration number of species; Replicate; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 12720 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gao, Kunshan; Xu, Juntian; Gao, Guang; Li, Yahe; Hutchins, David A; Huang, Bangqin; Wang, Lei; Zheng, Ying; Jin, Peng; Cai, Xiaoni; Häder, Donat-Peter; Li, Wei; Xu, Kai; Liu, Nana; Riebesell, Ulf (2012): Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2, 519–523, https://doi.org/10.1038/nclimate1507
    Publication Date: 2024-03-15
    Description: Carbon dioxide and light are two major prerequisites of photosynthesis. Rising CO2 levels in oceanic surface waters in combination with ample light supply are therefore often considered stimulatory to marine primary production. Here we show that the combination of an increase in both CO2 and light exposure negatively impacts photosynthesis and growth of marine primary producers. When exposed to CO2 concentrations projected for the end of this century, natural phytoplankton assemblages of the South China Sea responded with decreased primary production and increased light stress at light intensities representative of the upper surface layer. The phytoplankton community shifted away from diatoms, the dominant phytoplankton group during our field campaigns. To examine the underlying mechanisms of the observed responses, we grew diatoms at different CO2 concentrations and under varying levels (5-100%) of solar radiation experienced by the phytoplankton at different depths of the euphotic zone. Above 22-36% of incident surface irradiance, growth rates in the high-CO2-grown cells were inversely related to light levels and exhibited reduced thresholds at which light becomes inhibitory. Future shoaling of upper-mixed-layer depths will expose phytoplankton to increased mean light intensities. In combination with rising CO2 levels, this may cause a widespread decline in marine primary production and a community shift away from diatoms, the main algal group that supports higher trophic levels and carbon export in the ocean.
    Keywords: A4_SCS; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); C3_SCS; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chromista; Coast and continental shelf; DATE/TIME; Duration; E606_SCS; East China Sea; Entire community; Event label; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; In situ sampler; Irradiance; Irradiance, standard deviation; ISS; Laboratory experiment; LE04_SCS; Light; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeodactylum tricornutum; Phosphate; Phytoplankton; PN07_ECS; Potentiometric; Primary production/Photosynthesis; Primary production of carbon; Primary production of carbon, per chlorophyll a; Primary production of carbon, per volume of seawater; Primary production of carbon, standard deviation; Salinity; Season; SEATS_SCS; Single species; Skeletonema costatum; South China Sea; Species; Temperate; Temperature, water; Thalassiosira pseudonana; Time of day; Treatment; Tropical; Yield ratio
    Type: Dataset
    Format: text/tab-separated-values, 17109 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tong, Shanying; Hutchins, David A; Gao, Kunshan (2019): Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences, 16(2), 561-572, https://doi.org/10.5194/bg-16-561-2019
    Publication Date: 2024-03-15
    Description: Marine phytoplankton such as bloom-forming, calcite-producing coccolithophores, are naturally exposed to solar ultraviolet radiation (UVR, 280–400 nm) in the ocean's upper mixed layers. Nevertheless, the effects of increasing carbon dioxide (CO2)-induced ocean acidification and warming have rarely been investigated in the presence of UVR. We examined calcification and photosynthetic carbon fixation performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, grown under high (1000 µatm, HC; pHT: 7.70) and low (400 µatm, LC; pHT: 8.02) CO2 levels, at 15 °C, 20 °C and 24 °C with or without UVR. The HC treatment did not affect photosynthetic carbon fixation at 15 ∘C, but significantly enhanced it with increasing temperature. Exposure to UVR inhibited photosynthesis, with higher inhibition by UVA (320–395 nm) than UVB (295–320 nm), except in the HC and 24 °C-grown cells, in which UVB caused more inhibition than UVA. A reduced thickness of the coccolith layer in the HC-grown cells appeared to be responsible for the UV-induced inhibition, and an increased repair rate of UVA-derived damage in the HC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition. While calcification was reduced with elevated CO2 concentration, exposure to UVB or UVA affected the process differentially, with the former inhibiting it and the latter enhancing it. UVA-induced stimulation of calcification was higher in the HC-grown cells at 15 and 20 °C, whereas at 24 °C observed enhancement was not significant. The calcification to photosynthesis ratio (Cal ∕ Pho ratio) was lower in the HC treatment, and increasing temperature also lowered the value. However, at 20 and 24 °C, exposure to UVR significantly increased the Cal ∕ Pho ratio, especially in HC-grown cells, by up to 100 %. This implies that UVR can counteract the negative effects of the “greenhouse” treatment on the Cal ∕ Pho ratio; hence, UVR may be a key stressor when considering the impacts of future greenhouse conditions on E. huxleyi.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of carbon per cell; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbon/Nitrogen ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Light; Nitrogen, organic, particulate, per cell; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; pH, standard deviation; Photosynthetic carbon fixation rate, per cell; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Replicate; Salinity; Single species; Temperature; Temperature, water; Treatment; Uniform resource locator/link to reference; Volume
    Type: Dataset
    Format: text/tab-separated-values, 2250 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tatters, Avery O; Fu, Feixue; Hutchins, David A (2012): High CO2 and Silicate Limitation Synergistically Increase the Toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE, 7(2), e32116, https://doi.org/10.1371/journal.pone.0032116.g004
    Publication Date: 2024-04-03
    Description: Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biogenic silica; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chromista; Coast and continental shelf; Coulometric titration; Domoic acid per cell; Domoic acid production per cell; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; High Performance Liquid Chromatography (HPLC); Immunology/Self-protection; Laboratory experiment; Macro-nutrients; Nitrogen, organic, particulate; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, organic, particulate; Phytoplankton; Potentiometric; Pseudo-nitzschia fraudulenta; Replicate; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Ventura
    Type: Dataset
    Format: text/tab-separated-values, 439 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A (2013): Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure. Evolution, 67(7), 1879-1891, https://doi.org/10.1111/evo.12029
    Publication Date: 2024-04-03
    Description: Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .
    Keywords: Alexandrium sp.; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chromista; Coast and continental shelf; Coulometric titration; Coulometry; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gonyaulax sp.; Growth/Morphology; Growth rate; Identification; Incubation duration; Laboratory experiment; Lingulodinium polyedrum; Myzozoa; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter; Phytoplankton; Potentiometric; Prorocentrum micans; Replicate; Salinity; Species; Species interaction; Temperate; Temperature, water; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 5616 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-03
    Description: We describe interactive effects of total phosphorus (total P = 0.1-4.0 µmol/L; added as H2NaPO4), irradiance (40 and 150 µmol quanta/m**2/s), and the partial pressure of carbon dioxide (P-CO2; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO2- and dinitrogen (N-2)-fixation rates of the unicellular N-2-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated P-CO2 positively affected growth and CO2- and N-2-fixation rates under high light. Under low light, elevated P-CO2 positively affected growth rates at all concentrations of P, but CO2- and N-2-fixation rates were affected by elevated P-CO2 only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO2- and N-2-fixation declined as P-CO2 increased. The minimum concentration (C-min) of total P and half-saturation constant (K-1/2) for growth and CO2- and N-2-fixation rates with respect to total P were reduced by 0.05 µmol/L as a function of elevated P-CO2. We speculate that low P requirements under high P-CO2 resulted from a lower energy demand associated with carbon-concentrating mechanisms in comparison with low-P-CO2 cultures. There was also a 0.10 µmol/L increase in C-min and K-1/2 for growth and N-2 fixation with respect to total P as a function of increasing light regardless of P-CO2 concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO2, and light have both positive and negative interactive effects on growth and CO2-, and N-2-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon fixation rate, per cellular phosphorus; Cellular phosphorus, per cell volume; Coulometric titration; Crocosphaera watsonii; Cyanobacteria; Diameter; Diameter, standard error; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Laboratory strains; Light; log-phosphorus, total; Macro-nutrients; Nitrogen fixation rate, gross, per cellular phosphorus; Nitrogen fixation rate, per cell; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, total; Phosphorus, total, per cell; Phosphorus uptake rate, per cell; Phosphorus uptake rate/growth rate ratio; Photosynthetic carbon fixation per cell, maximum velocity; Photosynthetic carbon fixation rate per cell; Phytoplankton; Potentiometric; Primary production/Photosynthesis; Salinity; Single species; Species; Table; Temperature, water; Time point, descriptive
    Type: Dataset
    Format: text/tab-separated-values, 6388 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-03
    Description: Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B(12) and carbon dioxide partial pressure (pCO(2)) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B(12)-replete conditions, cells grown at high pCO(2) had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO(2). At high pCO(2), B(12)-limited cells had ~50% lower specific growth and carbon fixation rates, and used Fe ~15-fold less efficiently, and Zn and Cd ~3-fold less efficiently, in comparison with B(12)-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO(2)/B(12)-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B(12)-replete cells were 5- to 14-fold higher in comparison with B(12)-limited cells, suggesting that 〉80% of cellular Co of B(12)-limited cells was likely from B(12). Our results demonstrate that CO(2) and vitamin B(12) interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Attheya sp.; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Cadmium/Phosphorus ratio; Cadmium/Phosphorus ratio, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Phosphorus ratio; Carbon/Phosphorus ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Cobalt/Phosphorus ratio; Cobalt/Phosphorus ratio, standard deviation; Coulometric titration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Iron/Phosphorus ratio; Iron/Phosphorus ratio, standard deviation; Laboratory experiment; Laboratory strains; Micro-nutrients; Net use efficiency, Cadmium; Net use efficiency, Cadmium, standard deviation; Net use efficiency, Cobalt; Net use efficiency, Cobalt, standard deviation; Net use efficiency, Iron; Net use efficiency, Iron, standard deviation; Net use efficiency, Zinc; Net use efficiency, Zinc, standard deviation; Nitrogen/Phosphorus ratio; Nitrogen/Phosphorus ratio, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Primary production; Primary production/Photosynthesis; Primary production of carbon, standard deviation; Salinity; Single species; Species; Temperature, water; Treatment; Zinc/Phosphorus ratio; Zinc/Phosphorus ratio, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 270 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...