ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-16
    Description: The double-intertropical convergence zone (DI) systematic error, affecting state-of-the-art coupled general circulation models (CGCM) is examined in the multi-model Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) ensemble of simulations of the twentieth-century climate. Aim of this study is to quantify the DI error on precipitation in the tropical Pacific, with a specific focus on the relationship between the DI error and the representation of large-scale vertical circulation regimes in climate models. The DI rainfall signal is analysed using a regime sorting approach for the vertical circulation regimes. Through the use of this compositing technique, precipitation events are regime-sorted based on the large scale vertical motions, as represented by the mid-tropospheric lagrangian pressure tendency omega500 dynamical proxy. This methodology allows the partition of the precipitation signal into deep and shallow convective components. Following the regime-sorting diagnosis, the total DI bias is split into an error affecting the magnitude of precipitation associated with individual convective events and an error affecting the frequency of occurrence of single convective regimes. It is shown that, despite the existing large intra-model differences, CGCMs can be ultimately grouped into a few homegenous clusters, each featuring a well defined rainfall-vertical circulation relationship in the DI region. Three major behavioural clusters are identified within the AR4 models ensemble: two unimodal distributions, featuring maximum precipitation under subsidence and deep convection regimes, respectively, and one bimodal distribution, displaying both components. Extending this analysis to both coupled and uncoupled (atmosphere-only) AR4 simulations reveals that the DI bias in CGCMs is mainly due to the overly frequent occurrence of deep convection regimes, whereas the error on rainfall magnitude associated with individual convective events is overall consistent with errors already present in the corresponding atmosphere stand-alone simulations. A critical parameter controlling the strength of the DI systematic error is identified in the model-dependent sea surface temperature (SST) threshold leading to the onset of deep convection (THR), combined with the average SST in the south-eastern Pacific.
    Description: Published
    Description: 1127–1145
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Description: open
    Keywords: double ITCZ ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: El Nino-Southern Oscillation (ENSO) is an important air-sea coupled phenomenon that plays a dominant role in the variability of the tropical regions. Observations, atmospheric and oceanic reanalysis datasets are used to classify ENSO and non-ENSO years to investigate the typical features of its periodicity and atmospheric circulation patterns. Among non-ENSO years, we have analyzed a group, called type-II years, with very small SST anomalies in summer that tend to weaken the correlation between ENSO and precipitation in the equatorial regions. A unique character of ENSO is studied in terms of the quasi-biennial periodicity of SST and heat content (HC) fields over the Pacific-Indian Oceans. While the SST tends to have higher biennial frequency along the Equator, the HC maximizes it into two centers in the western Pacific sector. The north-western center, located east of Mindanao, is strongly correlated with SST in the NINO3 region. The classification of El Nino and La Nina years, based on NINO3 SST and north-western Pacific HC respectively, has been used to identify and describe temperature and wind patterns over an extended-ENSO region that includes the tropical Pacific and Indian Oceans. The description of the spatial patterns within the atmospheric ENSO circulation has been extended to tropospheric moisture fields and low-level moisture divergence during November–December–January, differentiating the role of El Nino, when large amounts of condensational heat are concentrated in the central Pacific, from La Nina that tends to mainly redistribute heat to Maritime Continents and higher latitudes. The influence of the described mechanisms on equatorial convection in the context of the variability of ENSO on longer timescales for the end of the 20th century is questioned. However, the inaccuracy of the atmospheric reanalysis products in terms of precipitation and the shorter time length of more reliable datasets hamper a final conclusion on this issue.
    Description: Published
    Description: 35-57
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ENSO ; atmospheric heating ; biennial variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...