ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (6)
  • 1
    Publication Date: 2016-02-01
    Description: The Arctic summer sea ice has diminished fast in recent decades. A strong year-to-year variability on top of this trend indicates that sea ice is sensitive to short-term climate fluctuations. Previous studies show that anomalous atmospheric conditions over the Arctic during spring and summer affect ice melt and the September sea ice extent (SIE). These conditions are characterized by clouds, humidity, and heat anomalies that all affect downwelling shortwave (SWD) and longwave (LWD) radiation to the surface. In general, positive LWD anomalies are associated with cloudy and humid conditions, whereas positive anomalies of SWD appear under clear-sky conditions. Here the effect of realistic anomalies of LWD and SWD on summer sea ice is investigated by performing experiments with the Community Earth System Model. The SWD and LWD anomalies are studied separately and in combination for different seasons. It is found that positive LWD anomalies in spring and early summer have significant impact on the September SIE, whereas winter anomalies show only little effect. Positive anomalies in spring and early summer initiate an earlier melt onset, hereby triggering several feedback mechanisms that amplify melt during the succeeding months. Realistic positive SWD anomalies appear only important if they occur after the melt has started and the albedo is significantly reduced relative to winter conditions. Simulations where both positive LWD and negative SWD anomalies are implemented simultaneously, mimicking cloudy conditions, reveal that clouds during spring have a significant impact on summer sea ice while summer clouds have almost no effect.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-05
    Description: A vertically nonuniform warming of the troposphere yields a lapse rate feedback by altering the infrared irradiance to space relative to that of a vertically uniform tropospheric warming. The lapse rate feedback is negative at low latitudes, as a result of moist convective processes, and positive at high latitudes, due to stable stratification conditions that effectively trap warming near the surface. It is shown that this feedback pattern leads to polar amplification of the temperature response induced by a radiative forcing. The results are obtained by suppressing the lapse rate feedback in the Community Climate System Model, version 4 (CCSM4). The lapse rate feedback accounts for 15% of the Arctic amplification and 20% of the amplification in the Antarctic region. The fraction of the amplification that can be attributed to the surface albedo feedback, associated with melting of snow and ice, is 40% in the Arctic and 65% in Antarctica. It is further found that the surface albedo and lapse rate feedbacks interact considerably at high latitudes to the extent that they cannot be considered independent feedback mechanisms at the global scale.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-10
    Description: When climate is forced by a doubling of CO2, a number of feedback processes are induced, such as changes of water vapor, clouds, and surface albedo. Here the CO2 forcing and concomitant feedbacks are studied individually using a general circulation model coupled to an aquaplanet mixed layer ocean. A technique for fixing the radiative effects of moisture and clouds by reusing these variables from 1 × CO2 and 2 × CO2 equilibrium climates in the model’s radiation code allows for a detailed decomposition of forcings, feedbacks, and responses. The cloud feedback in this model is found to have a weak global average effect and surface albedo feedbacks have been eliminated. As in previous studies, the water vapor feedback is found to approximately double climate sensitivity, but while its radiative effect is strongly amplified at low latitudes, the resulting response displays about the same degree of polar amplification as the full all-feedbacks experiment. In fact, atmospheric energy transports are found to change in a way that yields the same meridional pattern of response as when the water vapor feedback is turned off. The authors conclude that while the water vapor feedback does not in itself lead to polar amplification by increasing the ratio of high- to low-latitude warming, it does double climate sensitivity both at low and high latitudes. A polar amplification induced by other feedbacks in the system, such as the Planck and lapse rate feedbacks here, is thus strengthened in the sense of increasing the difference in high- and low-latitude warming.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-03
    Description: This study gives a comprehensive picture of how atmospheric large-scale circulation is related to moisture transport and to distributions of moisture, clouds, and surface downward longwave radiation in the Arctic in winter. Anomaly distributions of the abovementioned variables are compared in 30 characteristic wintertime atmospheric circulation regimes, which are allocated from 15 years (2003–17) of mean sea level pressure data of ERA-Interim reanalysis applying the self-organizing map method. The characteristic circulation regimes are further related to known climate indices—the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and Greenland blocking index—as well as to a frequent high pressure pattern across the Arctic Ocean from Siberia to North America, herein called the Arctic bridge. Effects of large-scale circulation on moisture, cloud, and longwave radiation are to a large extent occurring through the impact of horizontal moisture transport. Evaporation is typically not efficient enough to shape those distributions, and much of the moisture evaporated in the Arctic is transported southward. The positive phase of the NAO and AO increases moisture and clouds in northern Europe and the eastern North Atlantic Ocean, and a strong Greenland blocking typically increases those in the southwest of Greenland. When the Arctic bridge is lacking, the amount of moisture, clouds, and downward longwave radiation is anomalously high near the North Pole. Our results reveal a strong dependence of moisture, clouds, and longwave radiation on atmospheric pressure fields, which also appears to be important from a climate change perspective.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-12
    Description: A doubling of the atmospheric CO2 content leads to global warming that is amplified in the polar regions. The CO2 forcing also leads to a change of the atmospheric energy transport. This transport change affects the local warming induced by the CO2 forcing. Using the Community Earth System Model (CESM), the direct response to the transport change is investigated. Divergences of the transport change associated with a CO2 doubling are implemented as a forcing in the 1 × CO2 preindustrial control climate. This forcing is zero in the global mean. In response to a CO2 increase in CESM, the northward atmospheric energy transport decreases at the Arctic boundary. However, the transport change still leads to a warming of the Arctic. This is due to a shift between dry static and latent transport components, so that although the dry static transport decreases, the latent transport increases at the Arctic boundary, which is consistent with other model studies. Because of a greenhouse effect associated with the latent transport, the cooling caused by a change of the dry static component is more than compensated for by the warming induced by the change of the latent transport. Similar results are found for the Antarctic region, but the transport change is larger in the Southern Hemisphere than in its northern counterpart. As a consequence, the Antarctic region warms to the extent that this warming leads to global warming that is likely enhanced by the surface albedo feedback associated with considerable ice retreat in the Southern Hemisphere.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-15
    Description: This study evaluates the performance of six atmospheric reanalyses (ERA-Interim, ERA5, JRA-55, CFSv2, MERRA-2, and ASRv2) over Arctic sea ice from winter to early summer. The reanalyses are evaluated using observations from the Norwegian Young Sea Ice campaign (N-ICE2015), a 5-month ice drift in pack ice north of Svalbard. N-ICE2015 observations include surface meteorology, vertical profiles from radiosondes, as well as radiative and turbulent heat fluxes. The reanalyses simulate surface analysis variables well throughout the campaign, but have difficulties with most forecast variables. Wintertime (January–March) correlation coefficients between the reanalyses and observations are above 0.90 for the surface pressure, 2-m temperature, total column water vapor, and downward longwave flux. However, all reanalyses have a positive wintertime 2-m temperature bias, ranging from 1° to 4°C, and negative (i.e., upward) net longwave bias of 3–19 W m−2. These biases are associated with poorly represented surface inversions and are largest during cold-stable periods. Notably, the recent ERA5 and ASRv2 datasets have some of the largest temperature and net longwave biases, respectively. During spring (April–May), reanalyses fail to simulate observed persistent cloud layers. Therefore they overestimate the net shortwave flux (5–79 W m−2) and underestimate the net longwave flux (8–38 W m−2). Promisingly, ERA5 provides the best estimates of downward radiative fluxes in spring and summer, suggesting improved forecasting of Arctic cloud cover. All reanalyses exhibit large negative (upward) residual heat flux biases during winter, and positive (downward) biases during summer. Turbulent heat fluxes over sea ice are simulated poorly in all seasons.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...