ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
  • 1
    Publication Date: 2006-01-01
    Description: Planted pastures (mainly Brachiaria spp) are the most extensive land use in the cerrado (savannas of central Brazil) with an area of approximately 50 × 106 ha. The objective of the study was to assess the effects of pasture restoration on the N dynamics (net N mineralization/nitrification, available inorganic N and soil N oxide gas fluxes—NO and N2O), C dynamics (CO2 fluxes and microbial biomass carbon), and diversity of the soil bacterial community using denaturing gradient gel electrophoresis (DGGE) profiles. Sampling was done monthly on a farm in Planaltina, Goiás, Brazil (15°13′S, 47°42′W) from November 2001 to April 2002. Three areas of cerradão (dense cerrado) were converted to pasture (Brachiaria brizantha) in 1991, and after 8 years degradation was evident with the decreasing plant biomass production. Methods to restore these pastures were investigated for their sustainability, principally their effects on trace gas emissions. The pastures have been managed since 1999 as follows: 1) fertilized plot (N = 60 kg ha−1 yr−1, P = 12 kg ha−1 yr−1); 2) grass–legume plot, Brachiaria associated with a legume (Stylosanthes guianensis) with addition of P (12 kg ha−1 yr−1); and 3) a traditional plot without management. A fourth area of cerradão was converted to pasture in 1999 and was not managed (young pasture). Ammonium was the predominant inorganic N form in the soils (∼76 mg N kg−1) for all treatments throughout the study. In December 2001 a reduction in average soil N-NH4+ was observed (∼30 mg N kg−1) compared to November 2001, probably related to plant demand. All plots had high variability of soil N gases emissions, but during the wet season, the NO and N2O soil fluxes were near zero. The results of the water addition experiment made during the dry season (September 2002) indicated that the transition of dry to wet season is an important period for the production of N gases in the fertilized pasture and in the young pasture. Soil CO2 fluxes also increased after the water addition and the grass–legume plot had the highest increase in soil respiration (from ∼2 to 8.3 μmol m−2 s−1). The lowest values of soil respiration and microbial biomass carbon (∼320 mg C kg−1 soil) tended to be observed in the young pasture, because the superficial layer of the soil (0–10 cm) was removed during the conversion to pasture. Trace gas emissions measured after the water addition experiment corresponded to rapid changes in the soil bacterial community. The young pasture sample showed the lowest level of similarity in relation to the others, indicating that the bacterial community is also influenced by the time since conversion. This study indicates that the restoration technique of including Stylosanthes guianensis with B. brizantha increases plant productivity without the peaks of N oxide gas emissions that are often associated with the use of N fertilizers. Additionally, the soil bacterial community structure may be restored to one similar to that of native cerrado grasslands, suggesting that this restoration method may beneficially affect bacterially mediated processes.
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-01
    Description: The Brazilian Amazon forest and cerrado savanna encompasses a region of enormous ecological, climatic, and land-use variation. Satellite remote sensing is the only tractable means to measure the biophysical attributes of vegetation throughout this region, but coarse-resolution sensors cannot resolve the details of forest structure and land-cover change deemed critical to many land-use, ecological, and conservation-oriented studies. The Carnegie Landsat Analysis System (CLAS) was developed for studies of forest and savanna structural attributes using widely available Landsat Enhanced Thematic Mapper Plus (ETM+) satellite data and advanced methods in automated spectral mixture analysis. The methodology of the CLAS approach is presented along with a study of its sensitivity to atmospheric correction errors. CLAS is then applied to a mosaic of Landsat images spanning the years 1999–2001 as a proof of concept and capability for large-scale, very high resolution mapping of the Amazon and bordering cerrado savanna. A total of 197 images were analyzed for fractional photosynthetic vegetation (PV), nonphotosynthetic vegetation (NPV), and bare substrate covers using a probabilistic spectral mixture model. Results from areas without significant land use, clouds, cloud shadows, and water bodies were compiled by the Brazilian state and vegetation class to understand the baseline structural typology of forests and savannas using this new system. Conversion of the satellite-derived PV data to woody canopy gap fraction was made to highlight major differences by vegetation and ecosystem classes. The results indicate important differences in fractional photosynthetic cover and canopy gap fraction that can now be accounted for in future studies of land-cover change, ecological variability, and biogeochemical processes across the Amazon and bordering cerrado regions of Brazil.
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-04-01
    Description: In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), δ13C, δ15N, and P fractionations were measured on the soils of four different types of logging-related disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied. In the most disturbed areas, roads and decks, the authors found litter biomass removed and reduced soil C, N, P, particularly organic P, and δ13C. Soils were compacted and often experienced reducing conditions in the deck areas, resulting in higher pH, Ca, and Mg. No increases in soil nutrients were observed in the treefall gaps despite the flush of nutrient-rich fresh foliage in the tree crown that is left behind after the bole wood is removed. Observed nutrient losses are most likely caused by displacement of the litter layer. Increases in soil pH, Ca, and Mg occur in areas with reducing conditions (decks and roads) and may result from Fe reduction, freeing exchange sites that can then retain these cations. Calculations suggest that nutrient inputs from crown foliage in treefall gaps are probably too small to detect against the background level of nutrients in the top soils. The logging disturbances with the greatest spatial extent, skids and gaps, have the smallest immediate effect on soil nutrients, while those with the smallest spatial extent, roads and decks, have the largest impact. The changes observed 3–6 months after logging were similar to those measured 16 yr after logging, suggesting some interesting linkages between the mechanisms causing the immediate change and those maintaining these changes over time. The direct impacts on soil properties appear less important than the loss of nutrients in bole wood in determining the sustainability of selective logging. Medium-to-low intensity selective logging with a sufficiently long cutting cycle may be sustainable in these forests.
    Electronic ISSN: 1087-3562
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...