ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-08
    Description: The Aegean water masses and circulation structure are studied via two large-scale surveys performed during the late winters of 1988 and 1990 by the R/V Yakov Gakkel of the former Soviet Union. The analysis of these data sheds light on the mechanisms of water mass formation in the Aegean Sea that triggered the outflow of Cretan Deep Water (CDW) from the Cretan Sea into the abyssal basins of the eastern Mediterranean Sea (the so-called Eastern Mediterranean Transient). It is found that the central Aegean Basin is the site of the formation of Aegean Intermediate Water, which slides southward and, depending on their density, renews either the intermediate or the deep water of the Cretan Sea. During the winter of 1988, the Cretan Sea waters were renewed mainly at intermediate levels, while during the winter of 1990 it was mainly the volume of CDW that increased. This Aegean water mass redistribution and formation process in 1990 differed from that in 1988 in two major aspects: (i) during the winter of 1990 the position of the front between the Black Sea Water and the Levantine Surface Water was displaced farther north than during the winter of 1988 and (ii) heavier waters were formed in 1990 as a result of enhanced lateral advection of salty Levantine Surface Water that enriched the intermediate waters with salt. In 1990 the 29.2 isopycnal rose to the surface of the central basin and a large volume of CDW filled the Cretan Basin. It is found that, already in 1988, the 29.2 isopycnal surface, which we assume is the lowest density of the CDW, was shallower than the Kassos Strait sill and thus CDW egressed into the Eastern Mediterranean.
    Description: Published
    Description: 1841-1859
    Description: JCR Journal
    Description: reserved
    Keywords: Aegean Sea ; Water Masses ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-24
    Description: T-cell factor (Tcf)/lymphoid-enhancer factor (Lef) proteins are a structurally diverse family of deoxyribonucleic acid-binding proteins that have essential nuclear functions in Wnt/β-catenin signalling. Expression of Wnt/β-catenin target genes is highly dependent on context, but the precise role of Tcf/Lef family members in the generation and maintenance of cell-type-specific Wnt/β-catenin responses is unknown. Herein, we show that induction of a subset of Wnt/β-catenin targets in embryonic stem cells depends on Tcf1 and Tcf4, whereas other co-expressed Tcf/Lef family members cannot induce these targets. The Tcf1/Tcf4-dependent gene responses to Wnt are primarily if not exclusively mediated by C-clamp-containing Tcf1E and Tcf4E splice variants. A combined knockdown of Tcf1/Tcf4 abrogates Wnt-inducible transcription but does not affect the active chromatin conformation of their targets. Thus, the transcriptionally poised state of Wnt/β-catenin targets is maintained independent of Tcf/Lef proteins. Conversely, ectopically overexpressed Tcf1E cannot invade silent chromatin and fails to initiate expression of inactive Wnt/β-catenin targets even if repressive chromatin modifications are abolished. The observed non-redundant functions of Tcf1/Tcf4 isoforms in acute transcriptional activation demonstrated that the cell-type-specific complement of Tcf/Lef proteins is a critical determinant of context-dependent Wnt/β-catenin responses. Moreover, the apparent inability to cope with chromatin uncovers an intrinsic property of Tcf/Lef proteins that prevents false ectopic induction and ensures spatiotemporal stability of Wnt/β-catenin target gene expression.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-01
    Description: The Aegean water masses and circulation structure are studied via two large-scale surveys performed during the late winters of 1988 and 1990 by the R/V Yakov Gakkel of the former Soviet Union. The analysis of these data sheds light on the mechanisms of water mass formation in the Aegean Sea that triggered the outflow of Cretan Deep Water (CDW) from the Cretan Sea into the abyssal basins of the eastern Mediterranean Sea (the so-called Eastern Mediterranean Transient). It is found that the central Aegean Basin is the site of the formation of Aegean Intermediate Water, which slides southward and, depending on their density, renews either the intermediate or the deep water of the Cretan Sea. During the winter of 1988, the Cretan Sea waters were renewed mainly at intermediate levels, while during the winter of 1990 it was mainly the volume of CDW that increased. This Aegean water mass redistribution and formation process in 1990 differed from that in 1988 in two major aspects: (i) during the winter of 1990 the position of the front between the Black Sea Water and the Levantine Surface Water was displaced farther north than during the winter of 1988 and (ii) heavier waters were formed in 1990 as a result of enhanced lateral advection of salty Levantine Surface Water that enriched the intermediate waters with salt. In 1990 the 29.2 isopycnal rose to the surface of the central basin and a large volume of CDW filled the Cretan Basin. It is found that, already in 1988, the 29.2 isopycnal surface, which we assume is the lowest density of the CDW, was shallower than the Kassos Strait sill and thus CDW egressed into the Eastern Mediterranean.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1971-10-01
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...