ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 3233-3239 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We offer a way of determining the temperature range in which a path integral (PI) formulation of the quantum partition function works well and a way of calculating the ground state properties without employing extremely low temperatures (in order to elude the awkward problem that the quantities calculated by the PI formulation become inaccurate with decreasing temperature owing to unavoidable truncation of an infinite number of path integral variables). The fact that the PI energy, specific heat, etc. behave in a low temperature range against physical laws makes it possible to locate the "marginal'' temperature at which the PI specific heat begins to grow infinitely and to estimate the lowest temperature at which the PI formulation functions well (the "threshold temperature''). Whether or not the threshold temperature is low enough to extract only the ground state properties can be answered by either checking if the PI energy and free energy are equal at the threshold temperature or checking if the PI specific heat is relatively small thereat. If the system is in the ground state at the threshold temperature obtained, it is recommended to calculate the ground state properties at this temperature. This scheme can be executed by Monte Carlo methods, being open to many-particle systems. Using the discretized PI formulations, we apply the above procedure to a harmonic oscillator and a double-well potential. It is concluded that this scheme is successful at least as long as the potential is a slowly varying function of coordinates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 6390-6398 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using Bennett's Monte Carlo (MC) method, we calculate the quantum partition functions of path integral formulations. First, from numerically exact results for a harmonic oscillator and a double-well potential, we discuss how fast each approximate partition function converges to the exact value as the number of integral variables involved in the formulation is increased. It turns out that most effective and most suitable for the MC simulation is Takahashi and Imada's path integral fomulation based on a modified Trotter formula in which the original potential is replaced with an effective one. This formulation is well balanced between the following two factors: the effect of zero potential energy is underestimated, resulting in an improper increase in the partition function; and, on the other hand, effective potential restricts the motion of fictitious particles born in the formulation so that the partition function value tends to be smaller. Fictitious particles can be treated as classical ones. We therefore can apply Bennett's MC method to calculating the ratio of two quantum partition functions (of a system under consideration and a reference system). As the number of fictitious particles N is increased, choice of reference system becomes less and less important and multistage sampling becomes dispensable. This, to some extent, compensates for the expense that N is larger than the real particle number. The tunneling mechanism of fictitious particles in the simulation is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...