ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 6811-6815 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temperature dependence of field-stimulated exoelectron emission (FSEE) on a clean W tip was investigated. The increase of the electron emission at the moment of reapplication of the tip voltage was observed at the temperatures 200–450 K. This emission property was similar to the storage effect of exoelectron emission from Al tips reported previously. [Appl. Phys. Lett. 53, 626 (1988).] However, the emission intensity was independent of the voltage interruption period. The change in work function was also indicated at the temperature where FSEE was observed. The FSEE on W tips observed in this study was explained by the exoelectron emission during the surface reconstruction of W{001} and/or W{031} triggered by the high electric field. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 2273-2277 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A fast atomic oxygen beam facility consisting of a beam source, a mass spectrometer, an Auger electron spectroscope, a scanning tunneling microscope, and a friction tester has been developed to investigate interaction of energetic atomic oxygen with solid surfaces. The fast atomic oxygen beam has been characterized by time of flight distribution, quadrupole mass spectrometry, and quartz crystal microbalance. The time of flight distribution of the beam has shown that the average translational energy of the atomic oxygen beam reaches 4.7 eV and that the full width at half-maximum is 5.5 eV. A flux of the atomic oxygen is calculated from the frequency shift of the quartz crystal microbalance with silver electrodes, and typical flux of the atomic oxygen beam being 4.0×1012 atoms/cm2 s. The flux of atomic oxygen of this source is fairly low, but is corresponding to that in the altitude of 500 km in low Earth orbit. The surface sensitive analysis methods equipped with the facility, such as Auger electron spectroscopy and scanning tunneling microscopy, have provided changes in the surface composition and morphology caused by the atomic oxygen exposure, without receiving any effect of ambient air. The ultrahigh vacuum friction tester especially designed for this facility is used to measure tribological properties of solid lubricants under the atomic oxygen exposures. Such in situ testing capability of this facility enables fundamental research for understanding the reaction scheme of atomic oxygen as well as engineering-oriented research for obtaining high reliability of the space systems. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 3370-3378 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A two-thermocouple probe, composed of two fine-wire thermocouples of unequal diameters, is a novel technique for estimating thermocouple time constants without any dynamic calibration of the thermocouple response. This technique is most suitable for measuring fluctuating temperatures in turbulent combustion. In the present study, the reliability and applicability of this technique are appraised in a turbulent wake of a heated cylinder (without combustion). A fine-wire resistance thermometer (cold wire) of fast response is simultaneously used to provide a reference temperature. A quantitative and detailed comparison between the cold-wire measurement and the compensated thermocouple ones shows that a previous estimation scheme gives thermocouple time constants smaller than appropriate values, unless the noise in the thermocouple signals is negligible and/or the spatial resolution of the two-thermocouple probe is sufficiently high. The scheme has been improved so as to maximize the correlation coefficient between the two compensated-thermocouple outputs. The improved scheme offers better compensation of the thermocouple response. The present approach is generally applicable to in situ parameter identification of a first-order lag system. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 53 (1988), S. 626-627 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Exoelectrons were emitted from a 99.9999% pure Al tip by applying an electric field as a stimulus. This occurred at lower voltages than that necessary for field emission of electrons. Field-stimulated exoelectron emission showed a characteristic storage effect in accordance with the time interval of applied voltage pulses. Based upon this storage effect and a computer calculation of the field strength at the apex of the tip, we show by analytical discussions that exoelectrons are emitted by tunneling, not by the Schottky effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-05
    Description: In this work, a new design for a microheater combined with a quartz crystal microbalance (QCM) array for thermogravimetric analysis is presented. Each QCM consists of two electrodes to excite thickness-shear-mode vibrations and one microheater to increase the temperature on the crystal backside. In addition, all the electrode pads are patterned on the crystal backside, making the design of the QCM compact and user-friendly. Finally, the proposed QCM array was employed to separate ethanol from methanol. This was successfully achieved via thermal desorption spectra calculated by differentiating the frequency changes.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...